ترغب بنشر مسار تعليمي؟ اضغط هنا

Mapping the submillimeter spiral wave in NGC 6946

219   0   0.0 ( 0 )
 نشر من قبل Combes
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P.B. Alton




اسأل ChatGPT حول البحث

We have analysed SCUBA 850mum images of the (near) face-on spiral galaxy NGC 6946, and found a tight correlation between dust thermal emission and molecular gas. The map of visual optical depth relates well to the distribution of neutral gas (HI+H2) and implies a global gas-to-dust ratio of 90. There is no significant radial variation of this ratio: this can be understood, since the gas content is dominated by far by the molecular gas. The latter is estimated through the CO emission tracer, which is itself dependent on metallicity, similarly to dust emission. By comparing the radial profile of our visual optical depth map with that of the SCUBA image, we infer an emissivity (dust absorption coefficient) at 850mum that is 3 times lower than the value measured by COBE in the Milky Way, and 9 times lower than in NGC 891. A decomposition of the spiral structure half way out along the disk of NGC 6946 suggests an interarm optical depth of between 1 and 2. These surprisingly high values represent 40-80% of the visual opacity that we measure for the arm region (abridged).



قيم البحث

اقرأ أيضاً

93 - F. Sakhibov , A. S. Gusev , 2021
Star formation induced by a spiral shock wave, which in turn is generated by a spiral density wave, produces an azimuthal age gradient across the spiral arm, which has opposite signs on either side of the corotational resonance. An analysis of the sp atial separation between young star clusters and nearby HII regions made it possible to determine the position of the corotation radius in the studied galaxies. Fourier analysis of the gas velocity field in the same galaxies independently confirmed the corotation radius estimates obtained by the morphological method presented here.
We present SOFIA/FIFI-LS observations of the [CII] 158${mu}$m cooling line across the nearby spiral galaxy NGC 6946. We combine these with UV, IR, CO, and H I data to compare [CII] emission to dust properties, star formation rate (SFR), H$_2$, and HI at 560pc scales via stacking by environment (spiral arms, interarm, and center), radial profiles, and individual, beam-sized measurements. We attribute $73%$ of the [CII] luminosity to arms, and $19%$ and $8%$ to the center and interarm region, respectively. [CII]/TIR, [CII]/CO, and [CII]/PAH radial profiles are largely constant, but rise at large radii ($gtrsim$8kpc) and drop in the center ([CII] deficit). This increase at large radii and the observed decline with the 70${mu}$m/100${mu}$m dust color are likely driven by radiation field hardness. We find a near proportional [CII]-SFR scaling relation for beam-sized regions, though the exact scaling depends on methodology. [CII] also becomes increasingly luminous relative to CO at low SFR (interarm or large radii), likely indicating more efficient photodissociation of CO and emphasizing the importance of [CII] as an H$_2$ and SFR tracer in such regimes. Finally, based on the observed [CII] and CO radial profiles and different models, we find ${alpha}_{CO}$ to increase with radius, in line with the observed metallicity gradient. The low ${alpha}_{CO}$ (galaxy average $lesssim2,M_{sun},pc^{-2},(K,km,s^{-1})^{-1}$) and low [CII]/CO ratios ($sim$400 on average) imply little CO-dark gas across NGC 6946, in contrast to estimates in the Milky Way.
We present a CO(2-1) mosaic map of the spiral galaxy NGC 6946 by combining data from the Submillimeter Array and the IRAM 30 m telescope. We identify 390 giant molecular clouds (GMCs) from the nucleus to 4.5 kpc in the disk. GMCs in the inner 1 kpc a re generally more luminous and turbulent, some of which have luminosities >10^6 K km/s pc^2 and velocity dispersions >10 km/s. Large-scale bar-driven dynamics likely regulate GMC properties in the nuclear region. Similar to the Milky Way and other disk galaxies, GMC mass function of NGC 6946 has a shallower slope (index>-2) in the inner region, and a steeper slope (index<-2) in the outer region. This difference in mass spectra may be indicative of different cloud formation pathways: gravitational instabilities might play a major role in the nuclear region, while cloud coalescence might be dominant in the outer disk. Finally, the NGC 6946 clouds are similar to those in M33 in terms of statistical properties, but they are generally less luminous and turbulent than the M51 clouds.
We present a far-UV (FUV) study of the star-forming complexes (SFCs) in three nearby galaxies using the Ultraviolet Imaging Telescope (UVIT). The galaxies are close to face-on and show significant outer disk star formation. Two of them are isolated ( NGC 628, NGC 6946), and one is interacting with distant companions (NGC 5457). We compared the properties of the SFCs inside and outside the optical radius (R$_{25}$). We estimated the sizes, star formation rates (SFRs), metallicities, and the Toomre Q parameter of the SFCs. We find that the outer disk SFCs are at least ten times smaller in area than those in the inner disk. The SFR per unit area ($Sigma_{SFR}$) in both regions have similar mean values, but the outer SFCs have a much smaller range of $Sigma_{SFR}$. They are also metal-poor compared to the inner disk SFCs. The FUV emission is well correlated with the neutral hydrogen gas (HI) distribution and is detected within and near several HI~holes. Our estimation of the Q parameter in the outer disks of the two isolated galaxies suggests that their outer disks are stable (Q$>$1). However, their FUV images indicate that there is ongoing star formation in these regions. This suggests that there may be some non-luminous mass or dark matter in their outer disks, which increases the disk surface density and supports the formation of local gravitational instabilities. In the interacting galaxy, NGC 5457, the baryonic surface density is sufficient (Q$<$1) to trigger local disk instabilities in the outer disk.
We present the largest sample to date of giant molecular clouds (GMCs) in a substantial spiral galaxy other than the Milky Way. We map the distribution of molecular gas with high resolution and image fidelity within the central 5 kpc of the spiral ga laxy NGC 6946 in the 12CO (J=1-0) transition. By combining observations from the Nobeyama Radio Observatory 45-meter single dish telescope and the Combined Array for Research in Millimeter Astronomy (CARMA) interferometer, we are able to obtain high image fidelity and accurate measurements of LCO compared with previous purely interferometric studies. We resolve individual giant molecular clouds (GMCs), measure their luminosities and virial masses, and derive Xco - the conversion factor from CO measurements to H2 masses - within individual clouds. On average, we find that Xco = 1.2 times 10^20 cm-2 / (K km s-1), which is consistent within our uncertainties with previously derived Galactic values as well as the value we derive for Galactic GMCs above our mass sensitivity limit. The properties of our GMCs are largely consistent with the trends observed for molecular clouds detected in the Milky Way disk, with the exception of six clouds detected within sim400 pc of the center of NGC 6946, which exhibit larger velocity dispersions for a given size and luminosity, as has also been observed at the Galactic center.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا