$JHK$ Imaging Photometry of Seyfert 1 AGNs and Quasars III: Variability of Radio Quiet and Radio Loud AGNs


الملخص بالإنكليزية

Variability of 226 AGNs in the near-infrared $J$, $H$, and $K$ bands is analyzed and discussed. An ensemble average for measured variabilities was obtained for various samples of the AGNs divided by absolute $B$-magnitude $M_B$, redshift $z$, and radio strength. All the samples in the $J$, $H$, and $K$ bands are found to give significant ensemble variability, but no significant wavelength dependence is found. The ensemble variability in the entire sample combining the $J$, $H$, and $K$ samples is $Delta mapprox 0.22$ mag, while $Delta mapprox 0.18$ mag for the radio-quiet AGNs and $Delta mapprox 0.26$ mag for radio-loud AGNs. The ensemble variability for the radio-quiet AGNs shows no significant $M_B$-dependence, while showing positive $M_B$-dependence for the radio-loud AGNs. In any samples the measured variability shows positive correlation among different passbands, with the correlation coefficients of $r_{JH}$, $r_{HK}$, and $r_{JK}$ ranging from 0.6 to 0.9. For radio-quiet AGNs, the coefficient $r_{HK}$ in a redshift range of $0.1<z<0.3$ is significantly higher than $r_{JH}$ or $r_{JK}$. The coefficient for the radio-loud AGNs with $0.6<z<1.0$ is as high as 0.95, irrespective of the passband. However, for the radio-quiet AGNs with $z>0.3$ and radio-loud AGNs with $z<0.3$, we cannot confirm such strong correlation among different passbands. All the features of near-infrared variability for the radio-quiet AGNs are consistent with a simple dust reverberation model of the central regions of AGNs. However, the features for the radio-loud AGNs are not fully explained by such a model, and a non-thermal variable component is suggested as a viable candidate for causing their large and fast variability in the near-infrared region.

تحميل البحث