ترغب بنشر مسار تعليمي؟ اضغط هنا

M75, a Globular Cluster with a Trimodal Horizontal Branch. I. Color-Magnitude Diagram

151   0   0.0 ( 0 )
 نشر من قبل Marcio Catelan
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Catelan




اسأل ChatGPT حول البحث

Deep UBVI photometry for a large field covering the distant globular cluster M75 (NGC 6864) is presented. We confirm a previous suggestion (Catelan et al. 1998a) that M75 possesses a bimodal horizontal branch (HB) bearing striking resemblance to the well-known case of NGC 1851. In addition, we detect a third, smaller grouping of stars on the M75 blue tail, separated from the bulk of the blue HB stars by a gap spanning about 0.5 mag in V. Such a group of stars may correspond to the upper part of a very extended, though thinly populated, blue tail. Thus M75 appears to have a trimodal HB. The presence of the Grundahl jump is verified using the broadband U filter. We explore the color-magnitude diagram of M75 with the purpose of deriving the clusters fundamental parameters, and find a metallicity of [Fe/H] = -1.03 +/- 0.17 dex and -1.24 +/- 0.21 dex in the Carretta & Gratton (1997) and Zinn & West (1984) scales, respectively. We discuss earlier suggestions that the cluster has an anomalously low ratio of bright red giants to HB stars. A differential age analysis with respect to NGC 1851 suggests that the two clusters are essentially coeval.



قيم البحث

اقرأ أيضاً

201 - M. Zorotovic 2008
We present BV photometry of the Galactic globular cluster NGC 5286, based on 128 V frames and 133 B frames, and covering the entire face of the cluster. Our photometry reaches almost two magnitudes below the turn-off level, and is accordingly suitabl e for an age analysis. Field stars were removed statistically from the clusters color-magnitude diagram (CMD), and a differential reddening correction applied, thus allowing a precise ridgeline to be calculated. Using the latter, a metallicity of [Fe/H] = -1.70 +/- 0.10 in the Zinn & West scale, and [Fe/H] = -1.47 +/- 0.02 in the Carretta & Gratton scale, was derived on the basis of several parameters measured from the red giant branch, in good agreement with the value provided in the Harris catalog. Comparing the NGC 5286 CMD with the latest photometry for M3 by P. B. Stetson (2008, priv. comm.), and using VandenBerg isochrones for a suitable chemical composition, we find evidence that NGC 5286 is around 1.7 +/- 0.9 Gyr older than M3. This goes in the right sense to help account for the blue horizontal branch of NGC 5286, for which we provide a measurement of several morphological indicators. If NGC 5286 is a bona fide member of the Canis Major dwarf spheroidal galaxy, as previously suggested, our results imply that the latters oldest components may be at least as old as the oldest Milky Way globular clusters.
We present BV photometry of the Galactic globular cluster NGC 6402 (M14), based on 65 V frames and 67 B frames, reaching two magnitudes below the turn-off level. This represents, to the best of our knowledge, the deepest color-magnitude diagram (CMD) of NGC 6402 available in the literature. Statistical decontamination of field stars as well as differential reddening corrections are performed in order to derive a precise ridgeline and derive physical parameters of the cluster therefrom. We discuss previous attempts to derive a reddening value for the cluster, and argue in favor of a value E(B-V) = 0.57 +/- 0.02, which is significantly higher than indicated by either the Burstein & Heiles or Schlegel et al. (corrected according to Bonifacio et al.) interstellar dust maps. Differential reddening across the face of the cluster, which we find to be present at the level of Delta E(B-V) ~ 0.17 mag, is taken into account in our analysis. We measure several metallicity indicators based on the position of the red giant branch (RGB) in the cluster CMD. These give a metallicity of [Fe/H] = -1.38 +/- 0.07 in the Zinn & West scale and [Fe/H] = -1.28 +/- 0.08 in the new Carretta et al. (UVES) scale. We also provide measurements of other important photometric parameters for this cluster, including the position of the RGB luminosity function bump and the horizontal branch (HB) morphology. We compare the NGC 6402 ridgeline with the one for NGC 5904 (M5) derived by Sandquist et al., and find evidence that NGC 6402 and M5 have approximately the same age, to within the uncertainties -- although the possibility that M14 may be slighlty older cannot be ruled out.
155 - S. Cassisi 2009
We investigate a peculiar feature at the hottest, blue end of the horizontal branch of Galactic globular cluster omega Centauri, using the high-precision and nearly complete catalog that has been constructed from a survey taken with the ACS on board the HST, that covers the inner 10x10 arcminutes. It is a densely populated clump of stars with an almost vertical structure in the F435W-(F435W-F625W) plane, that we termed blue clump. A comparison with theoretical models leads to the conclusion that this feature must necessarily harbor either hot flasher stars, or canonical He-rich stars --progeny of the blue Main Sequence sub population observed in this cluster-- or a mixture of both types, plus possibly a component from the normal-He population hosted by the cluster. A strong constraint coming from theory is that the mass of the objects in the blue clump has to be very finely tuned, with a spread of at most only $sim$0.03Mo. By comparing observed and theoretical star counts along both the H- and He-burning stages we then find that at least 15% of the expected He-rich Horizontal Branch stars are missing from the color-magnitude diagram. This missing population could be the progeny of red giants that failed to ignite central He-burning and have produced He-core White Dwarfs. Our conclusion supports the scenario recently suggested by Calamida et al. (2008) for explaining the observed ratio of White Dwarfs to Main Sequence stars in omega Centauri.
601 - V. Kravtsov 2007
We carry out and analyze new multi-color photometry of the Galactic globular cluster (GC) M75 in UBVI and focus on the brighter sequences of the color- magnitude diagram (CMD), with particular emphasis on their location in U-based CMD. Specifically, we study the level both of the horizontal (HB) and red giant branches (RGB) relative to the main-sequence turnoff (TO) in the U magnitude. Along with the presented photometry of M75, we use our collection of photometric data on GCs belonging to the metal-poor range, [Fe/H]zw<-1.1 dex, obtained from observations with different equipment, but calibrated by standard stars situated in the observed cluster fields. We confirm our earlier finding, and extend it to a larger magnitude range.We demonstrate that DeltaU_{TO}^{BHB} expressing the difference in U magnitude between the TO point and the level of the blue HB, near its red boundary, of the metal-poor GCs observed with the EMMI camera of the NTT/ESO telescope is about 0.4-0.5 mag smaller as compared to GCs observed with the 100 telescope and 1.3 m Warsaw telescope of the Las Campanas Observatory. At the same time, Delta U_{TO}^{RGB}, the difference in U magnitude between the TO and RGB inflection (brightest) points, does not show such an apparent dependence on the characteristics of U filters used, but it depends on cluster metallicity. We have shown, for the first time, the dependence of the parameter DeltaU_{TO}^{RGB} on [Fe/H] and have estimated its analytical expression, by assuming a linear relation between the parameter and metallicity. Its slope, Delta U_{TO}^{RGB}/Delta [Fe/H]~1.2 mag/dex, is approx. a factor of two steeper than that of the dependence of the RGB bump position in the V magnitude on metallicity. The asymptotic giant branch (AGB) clump and features of the RGB luminosity function (LF) of M75 are also discussed.
Globular Clusters (GCs) in the Milky Way are the primary laboratories for establishing the ages of the oldest stellar populations and for measuring the color-magnitude relation of stars. In infrared (IR) color-magnitude diagrams (CMDs), the stellar m ain sequence (MS) exhibits a kink, due to opacity effects in M dwarfs, such that lower mass and cooler dwarfs become bluer in the IR color baseline. This diagnostic offers a new opportunity to model GC CMDs and to reduce uncertainties on cluster properties (e.g., their derived ages). In this context, we analyzed Hubble Space Telescope Wide Field Camera 3 IR archival observations of four GCs - 47Tuc, M4, NGC2808, and NGC6752 - for which the data are deep enough to fully sample the low-mass MS, reaching at least ~ 2 mag below the kink. We derived the fiducial lines for each cluster and compared them with a grid of isochrones over a large range of parameter space, allowing age, metallicity, distance, and reddening to vary within reasonable selected ranges. The derived ages for the four clusters are respectively 11.6, 11.5, 11.2, and 12.1 Gyr and their random uncertainties are sigma ~ 0.7 - 1.1 Gyr. Our results suggest that the near-IR MS kink, combined with the MS turn-off, provides a valuable tool to measure GC ages and offers a promising opportunity to push the absolute age of GCs to sub-Gyr accuracy with the next generation IR telescopes such as the James Webb Space Telescope and the Wide-Field Infrared Survey Telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا