Mean motion resonances (MMRs) can lead either to chaotic or regular motion. We report on a numerical experiment showing that even in one of the most chaotic regions of the Solar System - the region of the giant planets, there are numerous bands where MMRs can stabilize orbits of small bodies in a time span comparable to their lifetimes. Two types of temporary stabilization were observed: short period ($sim10^{4}$ years) when a body was in a MMR with only one planet and long period (over $10^{5}$ years) when a body is located in overlapping MMRs with two or three planets. The experiment showed that the Main Belt region can be enriched by cometary material in its pre-active state due to temporary resonant interactions between small bodies and giant planets.