ترغب بنشر مسار تعليمي؟ اضغط هنا

The Local Group Census: planetary nebulae in Sextans B

81   0   0.0 ( 0 )
 نشر من قبل Laura Magrini
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Five planetary nebulae (PNe) have been discovered in the nearby dwarf irregular galaxy. Emission line images were obtained using the Wide Field Camera of the 2.5m Isaac Newton Telescope (INT) at La Palma (Spain). The candidate PNe were identified by their point-like appearance and relatively strong [OIII] emission-line fluxes. They are located within a galactocentric distance of 2.8 arcmin, corresponding to 1.1 kpc at the distance of Sextans B. Luminosities are in the range 1800--5600Lsolar. Sextans B is one of the smallest dwarf irregular galaxies with a PN population. The number of PNe detected suggest an enhanced star formation rate between 1 and 5 Gyr ago.



قيم البحث

اقرأ أيضاً

52 - L. Magrini 2003
In the framework of our narrow-band survey of the Local Group galaxies, we present the results of the search for planetary nebulae (PNe) in the dwarf irregular galaxies IC10, LeoA and SextansA. Using the standard on-band/off-band technique, sixteen n ew candidate PNe have been discovered in the closest starburst galaxy, IC10. The optical size of this galaxy is estimated to be much larger than previously thought, considering the location of the new PNe in an area of 3.6 kpc X 2.7 kpc. We also confirm the results of previous studies for the other two dwarf irregular galaxies, with the detection of one candidate PN in LeoA and another one in SextansA. We review the number of planetary nebulae discovered in the Local Group to date and their behaviour with metallicity. We suggest a possible fall in the observed number of PNe when [Fe/H]$<<$-1.0, which might indicate that below this point the formation rate of PNe is much lower than for stellar populations of near Solar abundances. We also find non-negligible metallicity effects on the [OIII] luminosity of the brightest PN of a galaxy.
103 - Ortwin Gerhard 2007
Distant planetary nebulae (PNe) are used to measure distances through the PN luminosity function, as kinematic tracers in determining the mass distribution in elliptical galaxies, and most recently, for measuring the kinematics of the diffuse stellar population in galaxy clusters. This article reviews the photometric and spectroscopic survey techniques that have been used to detect PNe beyond the Local Group, out to the Coma cluster at 100 Mpc distance. Contaminations by other emission sources and ways to overcome them will be discussed as well as some science highlights and future perspectives.
Spectroscopic observations obtained with the VLT of one planetary nebula (PN) in Sextans A and of five PNe in Sextans B and of several HII regions (HII) in these two dwarf irregular galaxies are presented. The extended spectral coverage, from 320.0 t o 1000.0nm, and the large telescope aperture allowed us to detect a number of emission lines, covering more than one ionization stage for several elements (He, O, S, Ar). The electron temperature (Te) diagnostic [OIII] line at 436.3 nm was measured in all six PNe and in several HII allowing for an accurate determination of the ionic and total chemical abundances by means of the Ionization Correction Factors method. For the time being, these PNe are the farthest ones where such a direct measurement of the Te is obtained. In addition, all PNe and HII were also modelled using the photoionization code CLOUDY. The physico-chemical properties of PNe and HII are presented and discussed. A small dispersion in the oxygen abundance of HII was found in both galaxies: 12 + $log$(O/H)=7.6$pm$0.2 in SextansA, and 7.8$pm$0.2 in SextansB. For the five PNe of SextansA, we find that 12 + $log$(O/H)=8.0$pm$0.3, with a mean abundance consistent with that of HII. The only PN known in SextansA appears to have been produced by a quite massive progenitor, and has a significant nitrogen overabundance. In addition, its oxygen abundance is 0.4 dex larger than the mean abundance of HII, possibly indicating an efficient third dredge-up for massive, low-metallicity PN progenitors. The metal enrichment of both galaxies is analyzed using these new data.
We present a detailed study of the stellar and HI structure of the dwarf irregular galaxies SextansA and SextansB, members of the NGC3109 association. We use newly obtained deep (r~26.5) and wide field g,r photometry to extend the Surface Brightness (SB) profiles of the two galaxies down to mu_V~ 31.0 mag/arcsec^2. We find that both galaxies are significantly more extended than what previously traced with surface photometry, out to ~4 kpc from their centers along their major axis. Older stars are found to have more extended distribution with respect to younger populations. We obtain the first estimate of the mean metallicity for the old stars in SexB, from the color distribution of the Red Giant Branch, <[Fe/H]>=-1.6. The SB profiles show significant changes of slope and cannot be fitted with a single Sersic model. Both galaxies have HI discs as massive as their respective stellar components. In both cases the HI discs display solid-body rotation with maximum amplitude of ~50 km/s (albeit with significant uncertainty due to the poorly constrained inclination), implying a dynamical mass ~10^{9}~M_sun, a mass-to-light ratio M/L_V~25 and a dark-to-barionic mass ratio of ~10. The distribution of the stellar components is more extended than the gaseous disc in both galaxies. We find that the main, approximately round-shaped, stellar body of Sex~A is surrounded by an elongated low-SB stellar halo that can be interpreted as a tidal tail, similar to that found in another member of the same association (Antlia). We discuss these, as well as other evidences of tidal disturbance, in the framework of a past passage of the NGC3109 association close to the Milky Way, that has been hypothesized by several authors and is also supported by the recently discovered filamentary configuration of the association itself.
We present the initial results from an [O III] lambda 5007 survey for intra-group planetary nebulae in the M 81 group of galaxies. A total of 0.36 square degrees of the survey have been analyzed thus far, and a total of four intra-group candidates ha ve been detected. These data allow us to probe the physics of galaxy interactions in small groups, and give us an upper limit for the density of intracluster starlight. We find that the M 81 group has less than 3% of its stars in an intra-group component; this is much less than the fraction found in richer galaxy clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا