ﻻ يوجد ملخص باللغة العربية
We present the results of our monitoring of the halo black-hole soft X-ray transient (SXT) XTE J1118+480 during its decline to quiescence. The system has decayed 0.5 mags from December 2000 to its present near quiescent level at R=18.65 (June 2001). The ellipsoidal lightcurve is distorted by an additional modulation that we interpret as a superhump of P_sh=0.17049(1) d i.e. 0.3% longer than the orbital period. This implies a disc precession period P_prec= 52 d. After correcting the average phase-folded light curve for veiling, the amplitude difference between the minima suggests that the binary inclination angle lies in the range i=71-82 deg. However, we urge caution in the interpretation of these values because of residual systematic contamination of the ellipsoidal lightcurve by the complex form of the superhump modulation. The orbital--mean H-alpha profiles exhibit clear velocity variations with ~500 km/s amplitude. We interpret this as the first spectroscopic evidence of an eccentric precessing disc.
We present Doppler and modulation tomography of the X-ray nova XTE J1118+480 with data obtained during quiescence using the 10-m Keck II telescope. The hot spot where the gas stream hits the accretion disc is seen in H-Alpha, H-Beta, He I Lambda-5876
We report on the analysis of new and previously published MMT optical spectra of the black hole binary XTE J1118+480 during the decline from the 2000 outburst to true quiescence. From cross-correlation with template stars, we measure the radial veloc
We present contemporaneous, broadband, near-infrared spectroscopy (0.9-2.45 micron) and H-band photometry of the black hole X-ray binary, XTE J1118+480. We determined the fractional dilution of the NIR ellipsoidal light curves of the donor star from
Optical spectra were obtained of the optical counterpart of the high latitude soft X-ray transient XTE J1118+480 near its quiescent state with the new 6.5 m MMT and the 4.2 m WHT. The spectrum exhibits broad, double-peaked, emission lines of hydrogen
We present simultaneous multicolor infrared and optical photometry of the black hole X-ray transient XTE J1118+480 during its short 2005 January outburst, supported by simultaneous X-ray observations. The variability is dominated by short timescales,