ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-thermal bremsstrahlung as the dominant hard X-ray continuum emission from the supernova remnant MSH14-63 (RCW 86)

373   0   0.0 ( 0 )
 نشر من قبل Jacco Vink
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jacco Vink




اسأل ChatGPT حول البحث

We present an analysis of the X-ray emission of the supernova remnant MSH14-63, which was partially covered by four observations with XMM-Newton. The detection of Fe K emission at 6.4 keV, and the lack of spatial correlation between hard X-ray and radio emission is evidence against a dominant X-ray synchrotron component. We argue that the hard X-ray continuum is best explained by non-thermal bremsstrahlung from a supra-thermal tail to an otherwise cool electron gas. The existence of low electron temperatures, required to explain the absence of line emission, is supported by low temperatures found in other parts of the remnant, which are as low as 0.2 keV in some regions.



قيم البحث

اقرأ أيضاً

We have analyzed the atomic and molecular gas using the 21 cm HI and 2.6/1.3 mm CO emissions toward the young supernova remnant (SNR) RCW 86 in order to identify the interstellar medium with which the shock waves of the SNR interact. We have found an HI intensity depression in the velocity range between $-46$ and $-28$ km s$^{-1}$ toward the SNR, suggesting a cavity in the interstellar medium. The HI cavity coincides with the thermal and non-thermal emitting X-ray shell. The thermal X-rays are coincident with the edge of the HI distribution, which indicates a strong density gradient, while the non-thermal X-rays are found toward the less dense, inner part of the HI cavity. The most significant non-thermal X-rays are seen toward the southwestern part of the shell where the HI gas traces the dense and cold component. We also identified CO clouds which are likely interacting with the SNR shock waves in the same velocity range as the HI, although the CO clouds are distributed only in a limited part of the SNR shell. The most massive cloud is located in the southeastern part of the shell, showing detailed correspondence with the thermal X-rays. These CO clouds show an enhanced CO $J$ = 2-1/1-0 intensity ratio, suggesting heating/compression by the shock front. We interpret that the shock-cloud interaction enhances non-thermal X-rays in the southwest and the thermal X-rays are emitted by the shock-heated gas of density 10-100 cm$^{-3}$. Moreover, we can clearly see an HI envelope around the CO cloud, suggesting that the progenitor had a weaker wind than the massive progenitor of the core-collapse SNR RX J1713.7$-$3949. It seems likely that the progenitor of RCW 86 was a system consisting of a white dwarf and a low-mass star with low-velocity accretion winds.
Diffusive shock acceleration by the shockwaves in supernova remnants (SNRs) is widely accepted as the dominant source for Galactic cosmic rays. However, it is unknown what determines the maximum energy of accelerated particles. The surrounding enviro nment could be one of the key parameters. The SNR RCW 86 shows both thermal and non-thermal X-ray emission with different spatial morphologies. These emission originate from the shock-heated plasma and accelerated electrons respectively, and their intensities reflect their density distributions. Thus, the remnant provides a suitable laboratory to test possible association between the acceleration efficiency and the environment. In this paper, we present results of spatially resolved spectroscopy of the entire remnant with Suzaku. The spacially-resolved spectra are well reproduced with a combination of a power-law for synchrotron emission and a two-component optically thin thermal plasma, corresponding to the shocked interstellar medium (ISM) with kT of 0.3-0.6 keV and Fe-dominated ejecta. It is discovered that the photon index of the nonthermal component becomes smaller with decreasing the emission measure of the shocked ISM, where the shock speed has remained high. This result implies that the maximum energy of accelerated electrons in RCW 86 is higher in the low-density and higher shock speed regions.
G347.3-0.5 (RX J1713.7-3946) is a member of the new class of shell-type Galactic supernova remnants (SNRs) that feature non-thermal components to their X-ray emission. We have analyzed the X-ray spectrum of this SNR over a broad energy range (0.5 to 30 keV) using archived data from observations made with two satellites, the Roentgenstaellit (ROSAT) and the Advanced Satellite for Cosmology and Astrophysics (ASCA), along with data from our own observations made with the Rossi X-ray Timing Explorer (RXTE). Using a combination of the models EQUIL and SRCUT to fit thermal and non-thermal emission, respectively, from this SNR, we find evidence for a modest thermal component to G347.3-0.5s diffuse emission with a corresponding energy of kT = 1.4 keV. We also obtain an estimate of 70 TeV for the maximum energy of the cosmic-ray electrons that have been accelerated by this SNR.
147 - Satoru Katsuda 2009
We present results from X-ray analysis of a Galactic middle-aged supernova remnant (SNR) G156.2+5.7 which is bright and largely extended in X-ray wavelengths, showing a clear circular shape (radius about 50). Using the Suzaku satellite, we observed t his SNR in three pointings; partially covering the northwestern rim, the eastern rim, and the central portion of this SNR. In the northwestern rim and the central portion, we confirm that the X-ray spectra consist of soft and hard-tail emission, while in the eastern rim we find no significant hard-tail emission. The soft emission is well fitted by non-equilibrium ionization (NEI) model. In the central portion, a two-component (the interstellar medium and the metal-rich ejecta) NEI model fits the soft emission better than a one-component NEI model from a statistical point of view. The relative abundances in the ejecta component suggest that G156.2+5.7 is a remnant from a core-collapse SN explosion whose progenitor mass is less than 15 M_solar. The origin of the hard-tail emission is highly likely non-thermal synchrotron emission from relativistic electrons. In the northwestern rim, the relativistic electrons seem to be accelerated by a forward shock with a slow velocity of about 500 km/sec.
Several young supernova remnants (SNRs) have recently been detected in the high-energy and very-high-energy gamma-ray domains. As exemplified by RX J1713.7-3946, the nature of this emission has been hotly debated, and direct evidence for the efficien t acceleration of cosmic-ray protons at the SNR shocks still remains elusive. We analyzed more than 40 months of data acquired by the Large Area Telescope (LAT) on-board the Fermi Gamma-Ray Space Telescope in the HE domain, and gathered all of the relevant multi-wavelength (from radio to VHE gamma-rays) information about the broadband nonthermal emission from RCW 86. For this purpose, we re-analyzed the archival X-ray data from the ASCA/Gas Imaging Spectrometer (GIS), the XMM-Newton/EPIC-MOS, and the RXTE/Proportional Counter Array (PCA). Beyond the expected Galactic diffuse background, no significant gamma-ray emission in the direction of RCW 86 is detected in any of the 0.1-1, 1-10 and 10-100 GeV Fermi-LAT maps. In the hadronic scenario, the derived HE upper limits together with the HESS measurements in the VHE domain can only be accommodated by a spectral index Gamma <= 1.8, i.e. a value in-between the standard (test-particle) index and the asymptotic limit of theoretical particle spectra in the case of strongly modified shocks. The interpretation of the gamma-ray emission by inverse Compton scattering of high energy electrons reproduces the multi-wavelength data using a reasonable value for the average magnetic field of 15-25 muG. For these two scenarios, we assessed the level of acceleration efficiency. We discuss these results in the light of existing estimates of the magnetic field strength, the effective density and the acceleration efficiency in RCW 86.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا