ﻻ يوجد ملخص باللغة العربية
The galaxy pair NGC 5194/95 (M 51) is one of the closest and best known interacting systems. Despite its notoriety, however, many of its features are not well studied. Extending westward from NGC 5195 is a low surface brightness tidal tail, which can only be seen in deep broadband exposures. Our previous [O III] lambda 5007 planetary nebulae (PN) survey of M 51 recovered this tidal tail, and presented us with a opportunity to study the kinematics of a galaxy interaction in progress. We report the results of a spectroscopy survey of the PN, aimed at determining their kinematic properties. We then use these data to constrain new self-consistent numerical models of the system.
We report the results of a radial velocity survey of planetary nebulae (PNe) located in the tidal features of the well-known interacting system NGC 5194/95 (M51). We find clear kinematic evidence that M51s northwestern tidal debris consists of two di
Using an [OIII]5007 on-band/off-band filter technique, we identify 109 planetary nebulae (PNe) candidates in M 82, using the FOCAS instrument at the 8.2m Subaru Telescope. The use of ancillary high-resolution HST ACS H-alpha imaging aided in discrimi
This paper discusses the location of a sample of planetary nebulae on the HR diagram. We determine the internal velocity fields of 14 planetary nebulae from high-resolution echelle spectroscopy, with the help of photoionization models. The mass avera
It is now clear that a binary formation pathway is responsible for a significant fraction of planetary nebulae, and this increased sample of known binaries means that we are now in a position to begin to constrain their influence on the formation and
The role of central star binarity in the shaping of planetary nebulae (PNe) has been the subject of much debate, with single stars believed to be incapable of producing the most highly collimated morphologies. However, observational support for binar