ﻻ يوجد ملخص باللغة العربية
We use published mid-IR and V-band flux ratios for images A and B of Q2237+0305 to demonstrate that the size of the mid-IR emission region has a scale comparable to or larger than the microlens Einstein Radius (ER, ~10^17 cm for solar mass stars). Q2237+0305 has been monitored extensively in the R and V-bands for ~15 years. The variability record shows significant microlensing variability of the optical emission region, and has been used by several studies to demonstrate that the optical emission region is much smaller than the ER for solar-mass objects. For the majority of the monitoring history, the optical flux ratios have differed significantly from those predicted by macro-models. In contrast, recent observations in mid-IR show flux ratios similar to those measured in the radio, and to predictions of some lens models, implying that the mid-IR flux is emitted from a region that is at least 2 orders of magnitude larger than the optical emission region. We have calculated the likeli-hood of the observed mid-IR flux ratio as a function of mid-IR source size given the observed V-band flux ratio. The expected flux ratio for a source having dimensions of ~1 ER is a sensitive function of the macro model adopted. However we find that the probability of source size given the observed flux ratios is primarily sensitive to the ratio of the macro-model magnifications. The majority of published macro models for Q2237+0305 yield a flux ratio for images B and A of 0.8 - 1.1. By combining probabilities from the ratios A/B and C/D we infer that the diameter of a circular IR emission region is >1ER with >95% confidence. For microlensing by low-mass stars, this source size limit rules out non-thermal processes such as synchrotron as mechanisms for mid-IR emission.
We present high spatial resolution mid-IR images of the nuclear region of NGC 5128 (Centaurus A). Images were obtained at 8.8 micron, N-band (10.4 micron), and 18.3 micron using the mid-IR imager/spectrometer T-ReCS on Gemini South. These images show
We use the high magnification event seen in the 1999 OGLE campaign light curve of image C of the quadruply imaged gravitational lens Q2237+0305 to study the structure of the quasar engine. We have obtained g- and r-band photometry at the Apache Point
We report observations of the four-image gravitational lens system Q2237+0305 with the VLA at 20 cm and 3.6 cm. The quasar was detected at both frequencies (approx 0.7 mJy) with a flat spectrum. All four lensed images are clearly resolved at 3.6 cm,
We present subarcsecond resolution mid infrared images of NGC 4151 at 10.8 micron and 18.2 micron. These images were taken with the University of Florida mid-IR camera/spectrometer OSCIR at the Gemini North 8-m telescope. We resolve emission at both
New reverberation mapping measurements of the size of the optical iron emission-line region in quasars are provided, and a tentative size-luminosity relation for this component is reported. Combined with lag measurements in low-luminosity sources, th