ﻻ يوجد ملخص باللغة العربية
Analysis of the absorption lines in the afterglow spectrum of the gamma-ray burst GRB010222 indicates that its host galaxy (at a redshift of z=1.476) is the strongest damped Lyman-alpha (DLA) system known, having a very low metallicity and modest dust content. This conclusion is based on the detection of the red wing of Lyman-alpha plus a comparison of the equivalent widths of ultraviolet Mg I, Mg II, and Fe II lines with those in other DLAs. The column density of H I, deduced from a fit to the wing of Lyman-alpha, is (5 +/- 2) 10^22 cm^-2. The ratio of the column densities of Zn and Cr lines suggests that the dust content in our line of sight through the galaxy is low. This could be due to either dust destruction by the ultraviolet emission of the afterglow or to an initial dust composition different to that of the diffuse interstellar material, or a combination of both.
We report the discovery and analysis of the most metal-poor damped Lyman-alpha (DLA) system currently known, based on observations made with the Keck HIRES spectrograph. The metal paucity of this system has only permitted the determination of three e
We present Keck/OSIRIS infrared IFU observations of the $z = $ 3.153 sub-DLA DLA2233+131, previously detected in absorption to a background quasar and studied with single slit spectroscopy and PMAS integral field spectroscopy (IFU). We used the Laser
Gas surrounding high redshift galaxies has been studied through observations of absorption line systems toward background quasars for decades. However, it has proven difficult to identify and characterize the galaxies associated with these absorbers
We searched quasar spectra from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) for the rare occurrences where a strong damped Lyman-alpha absorber (DLA) blocks the Broad Line Region emission from the quasar and acts as a natural coronagr
We have identified a metal-strong (logN(Zn+) > 13.15 or logN(Si+) > 15.95) DLA (MSDLA) population from an automated quasar (QSO) absorber search in the Sloan Digital Sky Survey Data Release 3 (SDSS-DR3) quasar sample, and find that MSDLAs comprise ~5