ﻻ يوجد ملخص باللغة العربية
A number of studies have shown that the visibility of scattered broad emission lines in Seyfert 2 galaxies is strongly dependent on the IRAS f_60/f_25 flux ratio, where those Seyfert 2s with `warm IRAS colours show polarised broad line emission. It is now clear that this effect is due to the increasing dominance of the galactic rather than the AGN emission at 60um in less luminous `cool Seyfert 2s. However, we present evidence that the 25um emission is a good measure of the AGN luminosity for most Seyfert 2s. Using this result, we show that the visibility of scattered broad line emission has a dependence on the AGN luminosity. The observations can be interpreted self-consistently if the scale height of the scattering zone varies with central source luminosity whilst the scale height of the obscuring torus is approximately constant.
Optical and near-mid-infrared reverberation mapping data obtained at Universit{a}tssternwarte Bochum in Chile and with the Spitzer Space Telescope allow us to explore the geometry of both the H$alpha$ BLR and the dust torus for the nearby Seyfert 1 g
The hidden broad-line regions (BLRs) in Seyfert 2 galaxies, which display broad emission lines (BELs) in their polarized spectra, are a key piece of evidence in support of the unified model for active galactic nuclei (AGNs). However, the detailed kin
We present subarcsecond resolution mid-infrared (mid-IR) photometry in the wavelength range from 8 to 20 micron of eighteen Seyfert galaxies, reporting high spatial resolution nuclear fluxes for the entire sample. We construct spectral energy distrib
We compile a large sample of 120 Seyfert 2 galaxies (Sy2s) which contains 49 hidden broad-line region (HBLR) Sy2s and 71 non-HBLR Sy2s. From the difference in the power sources between two groups, we test if HBLR Sy2s are dominated by active galactic
Using a large sample of 90 Seyfert 2 galaxies (Sy2s) with spectropolarimetric observations, we tested the suggestion that the presence of hidden broad-line regions (HBLRs) in Sy2s is dependent upon the Eddington ratio. The stellar velocity dispersion