ترغب بنشر مسار تعليمي؟ اضغط هنا

The infrared luminosity of the torus and the visibility of scattered broad line emission in Seyfert 2 galaxies

60   0   0.0 ( 0 )
 نشر من قبل Stuart Lumsden
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A number of studies have shown that the visibility of scattered broad emission lines in Seyfert 2 galaxies is strongly dependent on the IRAS f_60/f_25 flux ratio, where those Seyfert 2s with `warm IRAS colours show polarised broad line emission. It is now clear that this effect is due to the increasing dominance of the galactic rather than the AGN emission at 60um in less luminous `cool Seyfert 2s. However, we present evidence that the 25um emission is a good measure of the AGN luminosity for most Seyfert 2s. Using this result, we show that the visibility of scattered broad line emission has a dependence on the AGN luminosity. The observations can be interpreted self-consistently if the scale height of the scattering zone varies with central source luminosity whilst the scale height of the obscuring torus is approximately constant.



قيم البحث

اقرأ أيضاً

Optical and near-mid-infrared reverberation mapping data obtained at Universit{a}tssternwarte Bochum in Chile and with the Spitzer Space Telescope allow us to explore the geometry of both the H$alpha$ BLR and the dust torus for the nearby Seyfert 1 g alaxy WPVS,48. On average, the H$alpha$ variations lag the blue AGN continuum by about 18 days, while the dust emission variations lag by 70 days in the J+K and by 90 days in the L+M bands. The IR echoes are sharp, while the H$alpha$ echo is smeared. This together favours a bowl-shaped toroidal geometry where the dust sublimation radius is defined by a bowl surface, which is virtually aligned with a single iso-delay surface, thus leading to the sharp IR echoes. The BLR clouds, however, are located inside the bowl and spread over a range of iso-delay surfaces, leading to a smeared echo.
The hidden broad-line regions (BLRs) in Seyfert 2 galaxies, which display broad emission lines (BELs) in their polarized spectra, are a key piece of evidence in support of the unified model for active galactic nuclei (AGNs). However, the detailed kin ematics and geometry of hidden BLRs are still not fully understood. The virial factor obtained from reverberation mapping of type 1 AGNs may be a useful diagnostic of the nature of hidden BLRs in type 2 objects. In order to understand the hidden BLRs, we compile six type 2 objects from the literature with polarized BELs and dynamical measurements of black hole masses. All of them contain pseudobulges. We estimate their virial factors, and find the average value is 0.60 and the standard deviation is 0.69, which agree well with the value of type 1 AGNs with pseudobulges. This study demonstrates that (1) the geometry and kinematics of BLR are similar in type 1 and type 2 AGNs of the same bulge type (pseudobulges), and (2) the small values of virial factors in Seyfert 2 galaxies suggest that, similar to type 1 AGNs, BLRs tend to be very thick disks in type 2 objects.
We present subarcsecond resolution mid-infrared (mid-IR) photometry in the wavelength range from 8 to 20 micron of eighteen Seyfert galaxies, reporting high spatial resolution nuclear fluxes for the entire sample. We construct spectral energy distrib utions (SEDs) that the AGN dominates adding near-IR measurements from the literature at similar angular resolution. The IR SEDs of intermediate-type Seyferts are flatter and present higher 10 to 18 micron ratios than those of Seyfert 2. We fit the individual SEDs with clumpy torus models using the in-house-developed BayesClumpy tool. The models reproduce the high spatial resolution measurements. Regardless of the Seyfert type, even with high spatial resolution data, near- to mid-IR SED fitting poorly constrains the radial extent of the torus. For the Seyfert 2, we find that edge-on geometries are more probable than face-on views, with a number of clouds along equatorial rays of N = 5-15. The 10 micron silicate feature is generally modeled in shallow absorption. For the intermediate-type Seyferts, N and the inclination angle of the torus are lower than those of the Seyfert 2 nuclei, with the silicate feature appearing in weak emission or absent. The columns of material responsible for the X-ray absorption are larger than those inferred from the model fits for most of the galaxies, which is consistent with X-ray absorbing gas being located within the dust sublimation radius whereas the mid-IR flux arises from an area farther from the accretion disc. The fits yield both the bolometric luminosity of the intrinsic AGN and the torus integrated luminosity, from which we derive the reprocessing efficiency of the torus. In the models, the outer radial extent of the torus scales with the AGN luminosity, and we find the tori to be confined to scales less than 5 pc.
We compile a large sample of 120 Seyfert 2 galaxies (Sy2s) which contains 49 hidden broad-line region (HBLR) Sy2s and 71 non-HBLR Sy2s. From the difference in the power sources between two groups, we test if HBLR Sy2s are dominated by active galactic nuclei (AGNs), and if non-HBLR Sy2s are dominated by starbursts. We show that: (1) HBLR Sy2s have larger accretion rates than non-HBLR Sy2s; (2) HBLR Sy2s have larger Nev $lambda 14.32$/Neii $lambda 12.81$ and oiv $lambda 25.89$/Neii $lambda 12.81$ line ratios than non-HBLR Sy2s; (3) HBLR Sy2s have smaller $IRAS$ $f_{60}/f_{25}$ flux ratio which shows the relative strength of the host galaxy and nuclear emission than non-HBLR Sy2s. So we suggest that HBLR Sy2s and non-HBLR Sy2s are AGN-dominated and starburst-dominated, respectively. In addition, non-HBLR Sy2s can be classified into the luminous ($L_{rm [O III]}>10^{41} rm ergs s^{-1}$) and less luminous ($L_{rm [O III]}<10^{41} rm ergs s^{-1}$) samples, when considering only their obscuration. We suggest that: (1) the invisibility of polarized broad lines (PBLs) in the luminous non-HBLR Sy2s depends on the obscuration; (2) the invisibility of PBLs in the less luminous non-HBLR Sy2s depends on the very low Eddington ratio rather than the obscuration.
73 - W. Bian IHEP 2006
Using a large sample of 90 Seyfert 2 galaxies (Sy2s) with spectropolarimetric observations, we tested the suggestion that the presence of hidden broad-line regions (HBLRs) in Sy2s is dependent upon the Eddington ratio. The stellar velocity dispersion and the extinction-corrected $OIII$ luminosity are used to derive the mass of central super-massive black holes and the Eddington ratio. We found that: (1) below the Eddington ratio threshold of $10^{-1.37}$, all but one object belong to non-HBLRs Sy2s; while at higher Eddington ratio, there is no obvious discrimination in the Eddington ratio and black hole mass distributions for Sy2s with and without HBLRs; (2) nearly all low-luminosity Sy2s (e.g., $LOIII < 10^{41} ergs$) do not show HBLRs regardless of the column density of neutral hydrogen ($N_{rm H}$); (3) for high-luminosity Sy2s, the possibility to detect HBLRs Sy2s is almost the same as that of non-HBLRs Sy2s; (4) when considering only Compton-thin Sy2s with higher $OIII$ luminosity ($>10^{41} ergs$), we find a very high detectability of HBLRs ,$sim$ 85%. These results suggested that AGN luminosity plays a major role in not detecting HBLRs in low-luminosity Sy2s, while for high-luminosity Sy2s, the detectability of HBLRs depends not only upon the AGN activity, but also upon the torus obscuration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا