ﻻ يوجد ملخص باللغة العربية
In June 1997, parallel observations using the Space Telescope Imaging Spectrograph (STIS) on the HST started to be taken in substantial numbers along many different lines-of-sight. We are using the imaging data to investigate the distortion of background galaxies by the gravitational field of the large scale matter distribution, also known as Cosmic Shear. This poster presents the data and the catalog production that leads to the cosmic shear result presented in the poster First Cosmic Shear results from STIS parallel program archive data (Haemmerle et al., this conference). The data is publicly available also at http://www.stecf.org/projects/shear .
Following the second HST servicing mission in 1997 when the STIS instrument was installed and the capability for parallel observations was enhanced, a substantial archive of non-proprietary parallel data has been accumulating. In this paper, we discu
The measurement of cosmic shear requires deep imaging with high image quality on many lines of sight to sample the statistics of large-scale structure. The expected distortion of galaxy images by cosmic shear on the STIS angular scale is a few percen
We report on the marginal detection of cosmic shear on sub-arcmin scales with archive data from the STIS camera on board HST. For the measurement 121 galaxy fields with a field of view of 51 x 51 are used to obtain an rms cosmic shear of ~ 4% with 1.
Since the Universe is inhomogeneous on scales well below the Hubble radius, light bundles from distant galaxies are deflected and distorted by the tidal gravitational field of the large-scale matter distribution as they propagate through the Universe
We present the first cosmic shear measurements obtained from the T0001 release of the Canada-France-Hawaii Telescope Legacy Survey. The data set covers three uncorrelated patches (D1, D3 and D4) of one square degree each observed in u*, g, r, i and z