ﻻ يوجد ملخص باللغة العربية
We have monitored the pulse frequencies of the two soft gamma repeaters SGR 1806-20 and SGR 1900+14 through the beginning of year 2001 using primarily Rossi X-ray Timing Explorer Proportional Counter Array observations. In both sources, we observe large changes in the spin-down torque up to a factor of ~4, which persist for several months. Using long baseline phase-connected timing solutions as well as the overall frequency histories, we construct torque noise power spectra for each SGR. The power spectrum of each source is very red (power-law slope ~-3.5). The torque noise power levels are consistent with some accreting systems on time scales of ~1 year, yet the full power spectrum is much steeper in frequency than any known accreting source. To the best of our knowledge, torque noise power spectra with a comparably steep frequency dependence have only been seen in young, glitching radio pulsars (e.g. Vela). The observed changes in spin-down rate do not correlate with burst activity, therefore, the physical mechanisms behind each phenomenon are also likely unrelated. Within the context of the magnetar model, seismic activity cannot account for both the bursts and the long-term torque changes unless the seismically active regions are decoupled from one another.
In this short note I discuss the hypothesis that bursting activity of magnetars evolves in time analogously to the glitching activity of normal radio pulsars (i.e. sources are more active at smaller ages), and that the increase of the burst rate foll
In this paper I will briefly review what are, in my view, the main contributions of BeppoSAX to the understanding of the class of sources known as Soft Gamma Repeaters. These enigmatic sources were firmly identified as steady pulsars just during the
We argue that giant flares in SGRs can be associated to the core conversion of an isolated neutron star having a subcritical magnetic field $sim 10^{12}$ G and a fallback disk around it. We show that, in a timescale of $lesssim 10^5$ yrs, accretion f
Infrared observations of the environment of the two Soft Gamma-ray Repeaters (SGRs) with the best known locations on the sky show that they are associated to clusters of massive stars. Observations with ISO revealed that SGR 1806-20 is in a cluster o
We present the results of a LIGO search for short-duration gravitational waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first search sensitive to neutron star f-modes, usually considered the most efficient GW emitting modes