ﻻ يوجد ملخص باللغة العربية
Over the last decade, cosmological observations have attained a level of precision which allows for very detailed comparison with theoretical predictions. We are beginning to learn the answers to some fundamental questions, using information contained in Cosmic Microwave Background Anisotropy (CMBA) data. In this talk, we briefly review some studies of the current and prospected constraints imposed by CMBA measurements on the neutrino physics and on the dark energy. As it was already announced by Scott (1999), we present some possible new physics from the Cosmic Microwave Background.
In this note we investigate the effects of perturbations in a dark energy component with a constant equation of state on large scale cosmic microwave background anisotropies. The inclusion of perturbations increases the large scale power. We investig
We study the chameleon field dark matter, dubbed textit{scalaron}, in $F(R)$ gravity in the Big Bang Nucleosynthesis (BBN) epoch. With an $R^{2}$-correction term required to solve the singularity problem for $F(R)$ gravity, we first find that the sca
I review standard big bang nucleosynthesis and so
A host of dark energy models and non-standard cosmologies predict an enhanced Hubble rate in the early Universe: perfectly viable models, which satisfy Big Bang Nucleosynthesis (BBN), cosmic microwave background and general relativity tests, may neve
An initial state for the observable universe consisting of a finite region with a large vacuum energy will break-up due to near horizon quantum critical fluctuations. This will lead to a Friedmann-like early universe consisting of an expanding cloud