Using ASCA, spatially integrated X-ray spectra of the central regions of M31 were studied. Data were accumulated over three different circular regions, with the radii of 3, 6 and 12, all centered on the nucleus. The spectra are relatively similar among the three regions. In the energy range above 1.5 keV, the spectra are reproduced by a combination of a disk black-body component and a black-body component, implying that the emission mainly comes from an assembly of low-mass X-ray binaries. In energies below 1.5 keV, the spectra involves two additional softer components, expressed with thin-thermal plasma emission models of temperatures ~ 0.9 keV and ~ 0.3 keV. Over the central 12 (2.4 kpc) region and in the 0.5-10 keV energy band, the binary component has a luminosity of 2.6 x 10^{39} erg/s, while the two softer components both exhibit luminosities of ~ 2 x 10^{38} erg/s. These results are compared with those from other missions, including Chandra and XMM-Newton in particular. Discussion is made on the nature of the two softer spectral components besides the binary one.