ﻻ يوجد ملخص باللغة العربية
The ever-increasing quality and complexity of astronomical data underscores the need for new and powerful data analysis applications. This need has led to the development of Sherpa, a modeling and fitting program in the CIAO software package that enables the analysis of multi-dimensional, multi-wavelength data. In this paper, we present an overview of Sherpas features, which include: support for a wide variety of input and output data formats, including the new Model Descriptor List (MDL) format; a model language which permits the construction of arbitrarily complex model expressions, including ones representing instrument characteristics; a wide variety of fit statistics and methods of optimization, model comparison, and parameter estimation; multi-dimensional visualization, provided by ChIPS; and new interactive analysis capabilities provided by embedding the S-Lang interpreted scripting language. We conclude by showing example Sherpa analysis sessions.
We apply the independent component analysis (ICA) to the real data from a gravitational wave detector for the first time. Specifically we use the iKAGRA data taken in April 2016, and calculate the correlations between the gravitational wave strain ch
After performing highly sensitive acceleration measurements during two years of drag-free flight around the Earth, MICROSCOPE provided the best constraint on the Weak Equivalence Principle (WEP) to date. Beside being a technological challenge, this e
The analysis of physical measurements often copes with highly correlated noises and interruptions caused by outliers, saturation events or transmission losses. We assess the impact of missing data on the performance of linear regression analysis invo
Compositional data represent a specific family of multivariate data, where the information of interest is contained in the ratios between parts rather than in absolute values of single parts. The analysis of such specific data is challenging as the a
In the last two decades, unsupervised latent variable models---blind source separation (BSS) especially---have enjoyed a strong reputation for the interpretable features they produce. Seldom do these models combine the rich diversity of information a