ترغب بنشر مسار تعليمي؟ اضغط هنا

The Las Campanas IR Survey: Early Type Galaxy Progenitors Beyond Redshift One

189   0   0.0 ( 0 )
 نشر من قبل Hsiao-Wen Chen
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. J. McCarthy




اسأل ChatGPT حول البحث

(Abridged) We have identified a population of faint red galaxies from a 0.62 square degree region of the Las Campanas Infrared Survey whose properties are consistent with their being the progenitors of early-type galaxies. The optical and IR colors, number-magnitude relation and angular clustering together indicate modest evolution and increased star formation rates among the early-type field population at redshifts between one and two. The counts of red galaxies with $H$ magnitudes between 17 and 20 rise with a slope that is much steeper than that of the total H sample. The surface density of red galaxies drops from roughly 3000 per square degree at H = 20.5, I-H > 3 to ~ 20 per square degree at H = 20, I-H > 5. The V-I colors are approximately 1.5 magnitudes bluer on average than a pure old population and span a range of more than three magnitudes. The colors, and photometric redshifts derived from them, indicate that the red galaxies have redshift distributions adequately described by Gaussians with sigma_z ~ 0.2$ centered near redshift one, with the exception that galaxies having $V-I<1.6$ and $I-H>3$ are primarily in the 1.5 < z < 2 range. We find co-moving correlation lengths of 9-10 Mpc at z ~ 1, comparable to, or larger than, those found for early-type galaxies at lower redshifts. A simple photometric evolution model reproduces the counts of the red galaxies, with only a ~ 30% decline in the underlying space density of early-type galaxies at z ~ 1.2. We suggest on the basis of the colors, counts, and clustering that these red galaxies are the bulk of the progenitors of present day early-type galaxies.



قيم البحث

اقرأ أيضاً

85 - D.L. Tucker 1996
Presented are measurements of the observed redshift-space galaxy-galaxy autocorrelation function, xi(s), for the Las Campanas Redshift Survey (LCRS). For separations 2.0/h Mpc < s < 16.4/h Mpc, xi(s) can be approximated by a power law with slope of - 1.52 +/- 0.03 and a correlation length of s_0 = (6.28 +- 0.27)/h Mpc. A zero-crossing occurs on scales of roughly 30 - 40/h Mpc. On larger scales, xi(s) fluctuates closely about zero, indicating a high level of uniformity in the galaxy distribution on these scales. In addition, two aspects of the LCRS selection criteria - a variable field-to-field galaxy sampling rate and a 55 arcsec galaxy pair separation limit - are tested and found to have little impact on the measurement of xi(s). Finally, the LCRS xi(s) is compared with those from numerical simulations; it is concluded that, although the LCRS xi(s) does not discriminate sharply among modern cosmological models, redshift-space distortions in the LCRS xi(s) will likely provide a strong test of theory.
127 - D. L. Tucker 1997
A friends-of-friends percolation algorithm has been used to extract a catalogue of drho/rho = 80 density enhancements (groups) from the six slices of the Las Campanas Redshift Survey (LCRS). The full catalogue contains 1495 groups and includes 35% of the LCRS galaxy sample. A statistical sample of 394 groups has been derived by culling groups from the full sample which either are too close to a slice edge, have a crossing time greater than a Hubble time, have a corrected velocity dispersion of zero or less, or contain a 55 arcsec orphan (a galaxy with a faked redshift excluded from the original LCRS redshift catalogue due to its proximity --- i.e., within 55 arcsec --- of another galaxy). Median properties derived from the statistical sample include: line-of-sight velocity dispersion sigma_los = 164 km/s, crossing time t_cr = 0.10/H_0, harmonic radius R_h = 0.58/h Mpc, pairwise separation R_p = 0.64/h Mpc, virial mass M_vir = (1.90x10^13)/h M_sun, total group R-band luminosity L_tot = (1.40x10^11)/h^2 L_sun, and R-band mass-to-light ratio M/L = 153h M_sun/L_sun.
107 - A. E. Firth 2001
The LCIR Survey, using the Cambridge IR Survey Instrument (CIRSI), reaches H ~ 20-21 over ~1 deg^2. We present results for 744 arcmin^2 in which public UBVRI data exist. We compare optical-IR colours with predictions of a semi-analytic hierarchical m odel (SAM) and find reasonable agreement. We also determine photometric redshifts, finding a median z of z_m ~ 0.55. We compare N(z) of different spectral types with models, showing that the observations are inconsistent with simple PLE models while the SAM provides a reasonable fit to the total N(z) but underestimates the number of z ~ 1 red spectral types. We also present N(z) for samples of red objects (EROs). We find that EROs with R - H > 4 and H < 20.5 have z_m ~ 1; redder EROs have higher z_m. For 19 < H < 20, EROs with R - H > 4 comprise ~18% of the observed galaxy population while in the SAM they contribute only ~4%. We also determine the angular correlation function w(theta) for magnitude, colour, spectral type and photo-z selected samples and use the estimated N(z) to derive the spatial clustering xi(r). Parametrizing xi(r) by xi(r_c,z)=(r_c/r_*(z))^(-1.8) (r_c comoving), we find that r_*(z) increases by ~1.5-2 times from z = 0 to z ~ 1.2. We interpret this as a selection effect - the galaxies selected at z ~ 1.2 are intrinsically very luminous. When galaxies are selected by absolute magnitude we find no evidence for evolution in r_* over this z range. Extrapolated to z = 0, we find r_*(0) ~ 6.5 h^-1Mpc for red galaxies and r_*(0) ~ 2-4 h^-1Mpc for blue galaxies. We also find that while the angular clustering amplitude of EROs with R - H > 4 or I - H > 3 is up to four times that of the whole galaxy population, the spatial clustering length r_*(z=1) is ~7.5-10.5 h^-1Mpc which is only a factor of ~1.7 times r_* for non-EROs lying in a similar z and luminosity range.
We use GOODS and CANDELS images to identify progenitors of massive (log M > 10 Msun) compact early-type galaxies (ETGs) at z~1.6. Since merging and accretion increase the size of the stellar component of galaxies, if the progenitors are among known s tar-forming galaxies, these must be compact themselves. We select candidate progenitors among compact Lyman-break galaxies at z~3 based on their mass, SFR and central stellar density and find that these account for a large fraction of, and possibly all, compact ETGs at z~1.6. We find that the average far-UV SED of the candidates is redder than that of the non-candidates, but the optical and mid-IR SED are the same, implying that the redder UV of the candidates is inconsistent with larger dust obscuration, and consistent with more evolved (aging) star-formation. This is in line with other evidence that compactness is a sensitive predictor of passivity among high-redshift massive galaxies. We also find that the light distribution of both the compact ETGs and their candidate progenitors does not show any extended halos surrounding the compact core, both in individual images and in stacks. We argue that this is generally inconsistent with the morphology of merger remnants, even if gas-rich, as predicted by N-body simulations. This suggests that the compact ETGs formed via highly dissipative, mostly gaseous accretion of units whose stellar components are very small and undetected in the HST images, with their stellar mass assembling in-situ, and that they have not experienced any major merging until the epoch of observations at z~1.6.
We study the spatial distribution of loose groups from the Las Campanas Redshift Survey, comparing it with the supercluster-void network delineated by rich clusters of galaxies. We use density fields and the friends-of-friends algorithm to identify t he members of superclusters of Abell clusters among the Las Campanas loose groups. We find that systems of loose groups tend to be oriented perpendicularly to the line-of-sight, and discuss possible reasons for that. We show that loose groups in richer systems (superclusters of Abell clusters) are themselves also richer and more massive than groups in systems without Abell clusters. Our results indicate that superclusters, as high density environments, have a major role in the formation and evolution of galaxy systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا