ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomic and molecular gas in the merger galaxy NGC 1316 (Fornax A) and its environment

122   0   0.0 ( 0 )
 نشر من قبل Vassilis Charmandaris
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Horellou




اسأل ChatGPT حول البحث

We present and interpret observations of atomic and molecular gas toward the southern elliptical galaxy NGC 1316 (Fornax A), a strong double-lobe radio source with a disturbed optical morphology that includes numerous shells and loops. The 12CO(1-0), 12CO(2-1), and HI observations were made with SEST and the VLA. CO emission corresponding to a total molecular hydrogen mass of 5x10^8 Msun was detected toward the central position as well as northwest and southeast of the nucleus in the regions of the dust patches. The origin of that gas is likely external and due to accretion of one or several small gas-rich galaxies. HI was not detected in the central region of NGC1316, but ~2x10^7 Msun of atomic gas was found toward the giant HII region discovered by Schweizer (1980) located 6.7 arcmin (or 36.2 kpc) from the nucleus. HI was also found at three other locations in the outer part of NGC 1316. The HI distributions and kinematics of the two nearby spiral companions of NGC 1316, NGC 1317 (a barred galaxy to the north) and NGC 1310 (to the west) could be studied. Both galaxies have unusually small HI disks that may have been affected by ram-pressure stripping.



قيم البحث

اقرأ أيضاً

The early-type galaxy NGC 1316 hosts about 10^7 solar masses of dust within a central radius of 5 kpc. These prominent dust structures are believed to have an external origin, which is also a popular interpretation for other dusty early-type galaxies . We use archival Hubble Space Telescope/ACS data to construct colour maps that delineate the dust pattern in detail, and we compare these data with maps constructed with data from MUSE of the VLT at the European Southern Observatory. Twelve MUSE pointings in wide field mode form a mosaic of the central 3.3x2.4. We use the tool PyParadise to fit the stellar population. We use the residual emission lines and the residual interstellar absorption NaI D-lines, and we measure line strengths, the velocity field, and the velocity dispersion field. The emission lines resemble LINER lines, with [NII] being the strongest line everywhere. Ionising sources are plausibly the post-asymptotic giant branch stars of the old or intermediate-age stellar population. There is a striking match between the dust structures, ionised gas, and atomic gas distributions, the last of which is manifested by interstellar absorption residuals of the stellar NaI D-lines. In the dust-free regions, the interstellar NaI D-lines appear in emission, which is indicative of a galactic wind. The velocity field of the ionised gas (and thus of the dust) is characterised by small-scale turbulent movements that indicate short lifetimes. At the very centre, a bipolar velocity field of the ionised gas is observed, which we interpret as an outflow. We identify a strongly inclined gaseous dusty disc along the major axis of NGC1316. A straight beam of ionised gas with a length of about 4 kpc emanates from the centre. Our findings are strongly suggestive of a dusty outflow. Nuclear outflows may be important dust-producing machines in galaxies. (Abridged)
136 - Matias Gomez 2001
We have studied the Globular Cluster System of the merger galaxy NGC 1316 in Fornax, using CCD BVI photometry. A clear bimodality is not detected from the broadband colours. However, dividing the sample into red (presumably metal- rich) and blue (met al-poor) subpopulations at B-I=1.75, we find that they follow strikingly different angular distributions. The red clusters show a strong correlation with the galaxy elongation, but the blue ones are circularly distributed. No systematic difference is seen in their radial profile and both are equally concentrated. We derive an astonishingly low Specific Frequency for NGC 1316 of only Sn=0.9, which confirms with a larger field a previous finding by Grillmair et al. (1999). Assuming a normal Sn of ~4 for early-type galaxies, we use stellar population synthesis models to estimate in 2 Gyr the age of this galaxy, if an intermediate-age population were to explain the low Sn we observe. This value agrees with the luminosity-weighted mean age of NGC 1316 derived by Kuntschner & Davies (1998) and Mackie & Fabbiano (1998). By fitting t5 functions to the Globular Cluster Luminosity Function (GCLF), we derived the following turnover magnitudes: B=24.69 +/- 0.15, V=23.87 +/- 0.20 and I=22.72 +/- 0.14. They confirm that NGC 1316, in spite of its outlying location, is at the same distance as the core of the Fornax cluster.
This paper presents Gemini-$gri$ high quality photometry for cluster candidates in the field of NGC 1316 (Fornax A) as part of a study that also includes GMOS spectroscopy. A preliminary discussion of the photometric data indicates the presence of fo ur stellar cluster populations with distinctive features in terms of age, chemical abundance and spatial distribution. Two of them seem to be the usually old (metal poor and metal rich) populations typically found in elliptical galaxies. In turn, an intermediate-age (5 Gyr) globular cluster population is the dominant component of the sample (as reported by previous papers). We also find a younger cluster population with a tentative age of $approx$ 1 Gyr.
The Suzaku X-ray satellite observed the nearby S0 galaxy NGC 1316, a merger remnant aged 3 Gyr. The total good exposure time was 48.7 ksec. The spectra were well represented by a two-temperature thermal model for the interstellar medium (ISM) plus a power-law model. The cool and hot temperatures of the thermal model were 0.48 +/- 0.03 and 0.92 +/- 0.04 keV, respectively. The excellent spectral sensitivity of Suzaku enables for the first time to measure the metal abundances of O, Ne, Mg, Si, and Fe in the ISM. The resultant abundance pattern of O, Ne, Mg, Si, and Fe is close to that of the new solar abundance determined by Lodders (2003). The measured abundance pattern is compared with those of elliptical galaxies and an S0 galaxy, observed with Suzaku. Considering the metal-enrichment from present Type Ia supernovae, the near-solar abundance pattern of the ISM in NGC~1316 indicates an enhanced {alpha}/Fe ratio of stellar materials in the entire galaxy, like in giant elliptical galaxies.
We present MeerKAT observations of neutral hydrogen gas (HI) in the nearby merger remnant NGC 1316 (Fornax A), the brightest member of a galaxy group which is falling into the Fornax cluster. We find HI on a variety of scales, from the galaxy centre to its large-scale environment. For the first time we detect HI at large radii (70 - 150 kpc in projection), mostly distributed on two long tails associated with the galaxy. Gas in the tails dominates the HI mass of NGC 1316: 7e+8 Msun -- 14 times more than in previous observations. The total HI mass is comparable to the amount of neutral gas found inside the stellar body, mostly in molecular form. The HI tails are associated with faint optical tidal features thought to be the remnant of a galaxy merger occurred a few billion years ago. They demonstrate that the merger was gas-rich. During the merger, tidal forces pulled some gas and stars out to large radii, where we now detect them in the form of optical tails and, thanks to our new data, HI tails; while torques caused the remaining gas to flow towards the centre of the remnant, where it was converted into molecular gas and fuelled the starburst revealed by the galaxys stellar populations. Several of the observed properties of NGC 1316 can be reproduced by a ~ 10:1 merger between a dominant, gas-poor early-type galaxy and a smaller, gas-rich spiral occurred 1 - 3 Gyr ago, likely followed by subsequent accretion of satellite galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا