ﻻ يوجد ملخص باللغة العربية
We present the results of a spectroscopic survey of 675 bright (16.5<Bj<18) galaxies in a 6 degree field centred on the Fornax cluster with the FLAIR-II spectrograph on the UK Schmidt Telescope. We measured redshifts for 516 galaxies of which 108 were members of the Fornax Cluster. Nine of these are new cluster members previously misidentified as background galaxies. The cluster dynamics show that the dwarf galaxies are still falling into the cluster whereas the giants are virialised. Our spectral data reveal a higher rate of star formation among the dwarf galaxies than suggested by morphological classification: 35 per cent have H-alpha emission indicative of star formation but only 19 per cent were morphologically classified as late-types. The distribution of scale sizes is consistent with evolutionary processes which transform late-type dwarfs to early-type dwarfs. The fraction of dwarfs with active star formation drops rapidly towards the cluster centre. The star-forming dwarfs are concentrated in the outer regions of the cluster, the most extreme in an infalling subcluster. We estimate gas depletion time scales for 5 dwarfs with detected HI emission: these are long (of order 10 Gyr), indicating that active gas removal must be involved if they are transformed into gas-poor dwarfs as they fall further into the cluster. In agreement with our previous results, we find no compact dwarf elliptical (M32-like) galaxies in the Fornax Cluster.
By utilising the large multi-plexing advantage of the 2dF spectrograph on the Anglo-Australian Telescope, we have been able to obtain a complete spectroscopic sample of all objects in a predefined magnitude range, 16.5<Bj<19.7, regardless of morpholo
Using the photometric data from the Next Generation Fornax Survey, we find a significant radial alignment signal among the Fornax dwarf galaxies. For the first time, we report that the radial alignment signal of nucleated dwarfs is stronger than that
Evolution of galaxies in dense environments can be affected by close encounters with neighbouring galaxies and interactions with the intracluster medium. Dwarf galaxies (dGs) are important as their low mass makes them more susceptible to these effect
Since first noticed by Shapley in 1939, a faint object coincident with the Fornax dwarf spheroidal has long been discussed as a possible sixth globular cluster system. However, debate has continued over whether this overdensity is a statistical artif
We simulate the formation of a low metallicity (0.01 Zsun) stellar cluster in a dwarf galaxy at redshift z~14. Beginning with cosmological initial conditions, the simulation utilizes adaptive mesh refinement and sink particles to follow the collapse