ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectropolarimetry of a Complete Infrared Selected Sample of Seyfert 2 Galaxies

103   0   0.0 ( 0 )
 نشر من قبل Stuart Lumsden
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S.L. Lumsden




اسأل ChatGPT حول البحث

We report the results of a spectropolarimetric survey of a complete far infrared selected sample of Seyfert 2 galaxies. We have found polarized broad Halpha emission in one new source, NGC5995. In the sample as a whole, there is a clear tendency for galaxies in which we have detected broad Halpha in polarized light to have warm mid--far infrared colours (F(60um)/F(25um)<4), in agreement with our previous results. However, a comparison of the optical, radio and hard x-ray properties of these systems leads us to conclude that this is a secondary consequence of the true mechanism governing our ability to see scattered light from the broad line region. We find a strong trend for galaxies showing such emission to lie above a critical value of the relative luminosity of the active core to the host galaxy (as measured from the [OIII] 5007A equivalent width) which varies as a function of the obscuring column density as measured from hard x-ray observations. The warmth of the infrared colours is then largely due to a combination of the luminosity of the active core, the obscuring column and the relative importance of the host galaxy in powering the far infrared emission, and not solely orientation as we inferred in our previous paper. Our data may also provide an explanation as to why the most highly polarized galaxies, which appear to have tori that are largely edge-on, are also the most luminous and have the most easily detectable scattered broad Halpha.



قيم البحث

اقرأ أيضاً

(abridged)The majority of Active Galactic Nuclei (AGN) suffer from significant obscuration by surrounding dust and gas. X-ray surveys in the 2-10 keV band will miss the most heavily-obscured AGN in which the absorbing column density exceeds $sim10^{2 4}$cm$^{-2}$ (the Compton-thick AGN). It is therefore vital to know the fraction of AGN that are missed in such X-rays surveys and to determine if these AGN represent some distinct population in terms of the fundamental properties of AGN and/or their host galaxies. In this paper we present the analysis of textit{XMM-Newton} X-ray data for a complete sample of 17 low-redshift Type 2 Seyfert galaxies chosen from the Sloan Digital Sky Survey based solely on the high observed flux of the [OIII]$lambda$5007 emission-line. This line is formed in the Narrow Line Region hundreds of parsecs away from the central engine. Thus, unlike the X-ray emission, it is not affected by obscuration due to the torus surrounding the black hole. It therefore provides a useful isotropic indicator of the AGN luminosity. As additional indicators of the intrinsic AGN luminosity, we use the Spitzer Space Telescope to measure the luminosities of the mid-infrared continuum and the [OIV]25.89$mu$m narrow emission-line. We then use the ratio of the 2-10 keV X-ray luminosity to the [OIII], [OIV], and mid-infrared luminosities to assess the amount of X-ray obscuration and to distinguish between Compton-thick and Compton-thin objects. We find that the majority of the sources suffer significant amounts of obscuration: the observed 2-10 keV emission is depressed by more than an order-of-magnitude in 11 of the 17 cases (as expected for Compton-thick sources).
98 - N. Chang , F. G. Xie , X. Liu 2021
Because the disc--jet coupling likely depends on various properties of sources probed, the sample control is always an important but challenging task. In this work, we re-analyzed the INTEGRAL hard X-ray-selected sample of Seyfert galaxies. We only c onsider sources that have measurements in black hole mass, and luminosities in radio and X-rays. Our sample includes 64 sources, consists of both bright AGNs and low-luminosity ones. We first find that, because of the similarity in the $L_{HX}/L_X$ distribution, the X-ray origin of radio-loud Seyferts may be the same to that of radio-quiet ones, where we attribute to the hot accretion flow (or similarly, the corona). We then investigate the connections between luminosities in radio and X-rays. Since our sample suffers a selection bias of a black hole mass $M_{BH}$ dependence on $L_X/L_{Edd}$, we focus on the correlation slope $xi_X$ between the radio (at 1.4 GHz) and X-ray luminosities in Eddington unit, i.e. $(L_R/L_{Edd})propto(L_X/L_{Edd})^{xi_X}$. We classify the sources according to various properties, i.e. 1) Seyfert classification, 2) radio loudness, and 3) radio morphology. We find that, despite these differences in classification, all the sources in our sample are consistent with a universal correlation slope $xi_X$, with $xi_X=0.77pm0.10$. This is unexpected, considering various possible radio emitters in radio-quiet systems. For the jet interpretation, our result may suggest a common/universal but to be identified jet launching mechanism among all the Seyfert galaxies, while properties like black hole spin and magnetic field strength only play secondary roles. We further estimate the jet production efficiency $eta_{jet}$ of Seyfert galaxies, which is $eta_{jet}approx1.9^{+0.9}_{-1.5}times10^{-4}$ on average. We also find that $eta_{jet}$ increases as the system goes fainter.
We present a study of a large, statistically complete sample of star-forming dwarf galaxies using mid-infrared observations from the {it Spitzer Space Telescope}. The relationships between metallicity, star formation rate (SFR) and mid-infrared color in these systems show that the galaxies span a wide range of properties. However, the galaxies do show a deficit of 8.0 um polycyclic aromatic hydrocarbon emission as is apparent from the median 8.0 um luminosity which is only 0.004 lstarf while the median $B$-band luminosity is 0.05 lstarb. Despite many of the galaxies being 8.0 um deficient, there is about a factor of 4 more extremely red galaxies in the [3.6] $-$ [8.0] color than for a sample of normal galaxies with similar optical colors. We show correlations between the [3.6] $-$ [8.0] color and luminosity, metallicity, and to a lesser extent SFRs that were not evident in the original, smaller sample studied previously. The luminosity--metallicity relation has a flatter slope for dwarf galaxies as has been indicated by previous work. We also show a relationship between the 8.0 um luminosity and the metallicity of the galaxy which is not expected given the competing effects (stellar mass, stellar population age, and the hardness of the radiation field) that influence the 8.0 um emission. This larger sample plus a well-defined selection function also allows us to compute the 8.0 um luminosity function and compare it with the one for the local galaxy population. Our results show that below 10$^{9}$ $L$solar, nearly all the 8.0 um luminosity density of the local universe arises from dwarf galaxies that exhibit strong ha emission -- i.e., 8.0 um and ha selection identify similar galaxy populations despite the deficit of 8.0 um emission observed in these dwarfs.
A sample of X-ray and optically selected narrow emission-line galaxies (769 sources) from the 3XMM catalogue cross-correlated with SDSS (DR9) catalogue has been studied. Narrow-emission line active galactic nuclei (AGN; type-2) have been selected on the basis of their emission line ratios and/or X-ray luminosity. We have looked for X-ray unobscured type-2 AGN. As X-ray spectra were not available for our whole sample, we have checked the reliability of using the X-ray hardness ratio (HR) as a probe of the level of obscuration and we found a very good agreement with full spectral fitting results, with only 2% of the sources with apparently unobscured HR turning out to have an obscured spectrum. Despite the fact that type-2 AGN are supposed to be absorbed based on the Unified Model, about 60% of them show no sign or very low level of X-ray obscuration. After subtraction of contaminants to the sample, that is Narrow-Line Seyfert 1 and Compton-thick AGN, the fraction of unobscured Sy2 drops to 47%. For these sources, we were able to rule out dust reddening and variability for most of them as an explanation of the absence of optical broad emission-lines. The main explanations remaining are the dilution of weak/very broad emission-lines by the host galaxy and the intrinsic absence of the broad-line region (BLR) due to low accretion rates (i.e. True Sy2). However, the number of True Sy2 strongly depends on the method used to verify the intrinsic lack of broad lines. Indeed using the optical continuum luminosity to predict the BLR properties gives a much larger fraction of True Sy2 (about 90% of the unobscured Sy2 sample) than the use of the X-ray 2 keV luminosity (about 20%). Nevertheless the number of AGN we securely detected as True Sy2 is at least three times larger that the previously confirmed number of True Sy2.
We present a Hubble Space Telescope (HST) survey of extended [OIII] emission for a sample of 60 Seyfert galaxies (22 Seyfert 1s and 38 Seyfert 2s), selected based on their far infrared properties. The observations for 42 of these galaxies were done i n a snapshot survey with WFPC2. The remaining 18 were obtained from the HST archive, most of which were observed with the same configuration. These observations cover 68% of the objects in the sample defined by Kinney et al. (2000), and create a valuable dataset for the study of the Narrow Line Region (NLR) properties of Seyfert galaxies. In this paper, we present the details of the observations, reductions, and measurements. We also discuss the extended structure of individual sources, and the relation of this emission to the radio and host galaxy morphology. We also address how representative the subsample of [O III]-imaged galaxies is of the entire sample, and possible selection effects that may affect this comparison of the properties of Seyfert 1 and Seyfert 2 galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا