ﻻ يوجد ملخص باللغة العربية
We present results from the first intensive monitoring campaign of a sample of Compact Symmetric Objects (CSOs). We observed seven CSOs at 8.5 GHz over a period of eight months, with an average spacing between observations of 2.7 days. Our results show that, as predicted, the flux densities of the CSOs are extremely stable; the mean RMS variability of the sample was 0.7% in flux density. The low variability of the CSOs makes them excellent flux density calibrators at this frequency. We recommend that at least four CSOs be included in any VLA monitoring campaign which requires precise epoch-to-epoch calibration, such as those to measure gravitational lens time delays. The CSO data enable the correction of small systematic errors in the primary flux calibration.
We report results on multi-epoch Very Large Array (VLA) and pc-scale Very Long Baseline Array (VLBA) observations of candidate compact symmetric objects (CSOs) from the faint sample of high frequency peakers. New VLBA observations could resolve the r
The class of radio sources known as Compact Symmetric Objects (CSOs) is of particular interest in the study of the evolution of radio galaxies. CSOs are thought to be young (probably ~10^4 years), and a very high fraction of them exhibit HI absorptio
We present results of multifrequency polarimetric VLBA observations of 34 compact radio sources. The observations are part of a large survey undertaken to identify CSOs Observed in the Northern Sky (COINS). Compact Symmetric Objects (CSOs) are of par
We study the Galactic field population of double compact objects (NS-NS, BH-NS, BH-BH binaries) to investigate the number (if any) of these systems that can potentially be detected with LISA at low gravitational-wave frequencies. We calculate the Gal
The radiation emitted by horizonless exotic compact objects (ECOs), such as wormholes, 2-2-holes, fuzzballs, gravastars, boson stars, collapsed polymers, superspinars etc., is expected to be strongly suppressed when compared to the radiation of black