ﻻ يوجد ملخص باللغة العربية
New AAT near-infrared and SEST 12CO J=2-1 observations are combined with existing ISO mid-infrared and ATCA cm radio continuum observations to examine the protostellar content of the Bok globule BHR 71. Together with observations of Herbig-Haro objects, these data show: (1) Two protostellar sources, IRS1 and IRS2, with a separation of ~17 arcsec (3400 AU) are located within BHR 71. (2) Each protostar is driving its own molecular outflow. The outflow from IRS1 is much larger in extent, is more massive, and dominates the CO emission. (3) Both protostars are associated with Herbig-Haro objects and shock excited 2.122 micron H2 v=1-0S(1) emission, which coincide spatially with their CO outflows. (4) IRS1 is associated with cm continuum emission, with a flat or rising spectrum which is consistent with free-free emission, a signpost of protostellar origin.
We present 1.3 mm ALMA observations of polarized dust emission toward the wide-binary protostellar system BHR 71 IRS1 and IRS2. IRS1 features what appears to be a natal, hourglass-shaped magnetic field. In contrast, IRS2 exhibits a magnetic field tha
BHR 71 is a well isolated Bok globule located at ~200 pc, which harbours a highly collimated bipolar outflow. The outflow is driven by a very young Class 0 protostar with a luminosity of ~9 L_sun. It is one of a very small number that show enhanced a
The magnetic field structure of a star-forming Bok globule BHR 71 was determined based on near-infrared polarimetric observations of background stars. The magnetic field in BHR 71 was mapped from 25 stars. By using a simple 2D parabolic function, the
We present a characterization of the binary protostar system that is forming within a dense core in the isolated dark cloud BHR71. The pair of protostars, IRS1 and IRS2, are both in the Class 0 phase, determined from observations that resolve the sou
The collapse of the protostellar envelope results in the growth of the protostar and the development of a protoplanetary disk, playing a critical role during the early stages of star formation. Characterizing the gas infall in the envelope constrains