ترغب بنشر مسار تعليمي؟ اضغط هنا

Gliese 569B: A young multiple brown dwarf system?

349   0   0.0 ( 0 )
 نشر من قبل Matthew A. Kenworthy
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M.A. Kenworthy




اسأل ChatGPT حول البحث

The nearby late M star Gliese 569B was recently found by adaptive optics imaging to be a double with separation ~1 AU. To explore the orbital motion and masses, we have undertaken a high resolution (~0.05 arcsec) astrometric study. Images were obtained over 1.5 years with bispectrum speckle interferometry at the 6.5m MMT and 6m SAO telescopes. Our data show motion corresponding to more than half the orbital period, and constrain the total mass to be > 0.115 M_solar, with a most probable value of 0.145 M_solar. Higher masses cannot be excluded without more extended observations, but from statistical analysis we find an 80% probability that the total mass is less than 0.21 M_solar. An infrared spectrum of the blended B double obtained with the MMT has been modeled as a blend of two different spectral types, chosen to be consistent with the measured J and K band brightness difference of a factor ~2. The blended fit is not nearly as good as that to a pure M8.5+ template. Therefore we hypothesize that the brighter component likely has two unresolved components with near equal masses, each the same as the fainter component. If Gl 569B is a triple our dynamical limits suggest each component has a mass of 50 (+23/-4) M_jupiter. We infer an age for the system of 300 Myr, from its kinematic motion which places its as a member of the Ursa Major moving group. All the above parameters are consistent with the latest DUSTY evolutiuon models for brown dwarfs.



قيم البحث

اقرأ أيضاً

Gliese 569B is a multiple brown dwarf system whose exact nature has been the subject of several investigations over the past few years. Interpretation has partially relied on infra-red photometry and spectroscopy of the resolved components of the sys tem. We present seeing limited Ks photometry over four nights, searching for variability in this young low mass substellar system. Our photometry is consistent with other reported photometry, and we report the tentative detection of several periodic signals consistent with rotational modulation due to spots on their surfaces. The five significant periods range from 2.90 hours to 12.8 hours with peak to peak variabilities from 28 mmag to 62 mmag in the Ks band. If both components are rotating with the shortest periods, then their rotation axes are not parallel with each other, and the rotation axis of the Bb component is not perpendicular to the Ba-Bb orbital plane. If Bb has one of the longer rotational periods, then the Bb rotation axis is consistent with being parallel to the orbital axis of the Ba-Bb system.
We report the discovery of a widely separated (258$farcs3pm0farcs$4) T dwarf companion to the Gl 570ABC system. This new component, Gl 570D, was initially identified from the Two Micron All Sky Survey (2MASS). Its near-infrared spectrum shows the 1.6 and 2.2 $micron$ CH$_4$ absorption bands characteristic of T dwarfs, while its common proper motion with the Gl 570ABC system confirms companionship. Gl 570D (M$_J$ = 16.47$pm$0.07) is nearly a full magnitude dimmer than the only other known T dwarf companion, Gl 229B, and estimates of L = (2.8$pm$0.3)x10$^{-6}$ L$_{sun}$ and T$_{eff}$ = 750$pm$50 K make it significantly cooler and less luminous than any other known brown dwarf companion. Using evolutionary models by Burrows et al. and an adopted age of 2-10 Gyr, we derive a mass estimate of 50$pm$20 M$_{Jup}$ for this object.
98 - M. C. Schutte 2020
We report the discovery of the youngest brown dwarf with a disk at 102 pc from the Sun, WISEA~J120037.79-784508.3 (W1200-7845), via the Disk Detective citizen science project. We establish that W1200-7845 is located in the 3.7$substack{+4.6 -1.4}$ M yr-old $varepsilon$~Cha association. Its spectral energy distribution (SED) exhibits clear evidence of an infrared (IR) excess, indicative of the presence of a warm circumstellar disk. Modeling this warm disk, we find the data are best fit using a power-law description with a slope $alpha = -0.94$, which suggests it is a young, Class II type disk. Using a single blackbody disk fit, we find $T_{eff, disk} = 521 K$ and $L_{IR}/L_{*} = 0.14$. The near-infrared spectrum of W1200-7845 matches a spectral type of M6.0$gamma pm 0.5$, which corresponds to a low surface gravity object, and lacks distinctive signatures of strong Pa$beta$ or Br$gamma$ accretion. Both our SED fitting and spectral analysis indicate the source is cool ($T_{eff} = $2784-2850 K), with a mass of 42-58 $M_{Jup}$, well within the brown dwarf regime. The proximity of this young brown dwarf disk makes the system an ideal benchmark for investigating the formation and early evolution of brown dwarfs.
We present the detection of a young brown dwarf companion DH Tau B associated with the classical T Tauri star DH Tau. Near-infrared coronagraphic observations with CIAO on the Subaru Telescope have revealed DH Tau B with H = ~15 mag located at 2.3 (3 30 AU) away from the primary DH Tau A. Comparing its position with a Hubble Space Telescope archive image, we confirmed that DH Tau A and B share the common proper motion, suggesting that they are physically associated with each other. The near-infrared color of DH Tau B is consistent with those of young stellar objects. The near-infrared spectra of DH Tau B show deep water absorption bands, a strong K I absorption line, and a moderate Na I absorption line. We derived its effective temperature and surface gravity of Teff = 2700 -- 2800 K and log g = 4.0--4.5, respectively, by comparing the observed spectra with synthesized spectra of low-mass objects. The location of DH Tau B on the HR diagram gives its mass of 30 -- 50 M_Jupiter.
With Hubble Space Telescope Fine Guidance Sensor astrometry and previously published radial velocity measures we explore the exoplanetary system HD 202206. Our modeling results in a parallax, $pi_{abs} = 21.96pm0.12$ milliseconds of arc, a mass for H D 202206 B of M$_B = 0.089^{ +0.007}_{-0.006}$ Msun, and a mass for HD 202206 c of M$_c = 17.9 ^{ +2.9}_{-1.8}$ MJup. HD 202206 is a nearly face-on G+M binary orbited by a brown dwarf. The system architecture we determine supports past assertions that stability requires a 5:1 mean motion resonance (we find a period ratio, $P_c/P_B = 4.92pm0.04$) and coplanarity (we find a mutual inclination, Phi = 6 arcdeg pm 2 arcdeg).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا