ترغب بنشر مسار تعليمي؟ اضغط هنا

The giant radio halo in Abell 2163

73   0   0.0 ( 0 )
 نشر من قبل Luigina Feretti
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New radio data is presented for the rich cluster Abell 2163. The cluster radio emission is characterized by the presence of a radio halo, which is one of the most powerful and extended halos known so far. In the NE peripheral cluster region, we also detect diffuse elongated emission, which we classify as a cluster relic. The cluster A2163 is very hot and luminous in X-ray. Its central region is probably in a highly non relaxed state, suggesting that this cluster is likely to be a recent merger. The existence of a radio halo in this cluster confirms that halos are associated with hot massive clusters, and confirms the connection between radio halos and cluster merger processes. The comparison between the radio emission of the halo and the cluster X-ray emission shows a close structural similarity. A power law correlation is found between the radio and X-ray brightness, with index = 0.64. We also report the upper limit to the hard X-ray emission, obtained from a BeppoSAX observation. We discuss the implications of our results.



قيم البحث

اقرأ أيضاً

223 - L. Feretti 2004
New radio data at 330 MHz are presented for the rich clusters Abell 665 and Abell 2163, whose radio emission is characterized by the presence of a radio halo. These images allowed us to derive the spectral properties of the two clusters under study. The integrated spectra of these halos between 0.3 GHz and 1.4 GHz are moderately steep: alfa(0.3-1.4) = 1.04 and = 1.18, for A665 and A2163, respectively. The spectral index maps, produced with an angular resolution of the order of 1 arcmin, show features of the spectral index (flattening and patches), which are indication of a complex shape of the radiating electron spectrum, and are therefore in support of electron reacceleration models. Regions of flatter spectrum are found to be related to the recent merger activity in these clusters. This is the first strong confirmation that the cluster merger supplies energy to the radio halo. In the undisturbed cluster regions, the spectrum steepens with the distance from the cluster center. This is interpreted as the result of the combination of the magnetic field profile with the spatial distribution of the reacceleration efficiency, thus allowing us to set constraints on the radial profile of the cluster magnetic field.
74 - T. Venturi 2017
We report on a spectral study at radio frequencies of the giant radio halo in A2142 (z=0.0909), which we performed to explore its nature and origin. A2142 is not a major merger and the presence of a giant radio halo is somewhat surprising. We perform ed deep radio observations with the GMRT at 608 MHz, 322 MHz, and 234 MHz and with the VLA in the 1-2 GHz band. We obtained high-quality images at all frequencies in a wide range of resolutions. The radio halo is well detected at all frequencies and extends out to the most distant cold front in A2142. We studied the spectral index in two regions: the central part of the halo and a second region in the direction of the most distant south-eastern cold front, selected to follow the bright part of the halo and X-ray emission. We complemented our observations with a preliminary LOFAR image at 118 MHz and with the re-analysis of archival VLA data at 1.4 GHz. The two components of the radio halo show different observational properties. The central brightest part has higher surface brightess and a spectrum whose steepness is similar to those of the known radio halos, i.e. $alpha^{rm 1.78~GHz}_{rm 118~MHz}=1.33pm 0.08$. The ridge, which fades into the larger scale emission, is broader in size and has considerably lower surface brightess and a moderately steeper spectrum, i.e. $alpha^{rm 1.78~GHz}_{rm 118~MHz}sim 1.5$. We propose that the brightest part of the radio halo is powered by the central sloshing in A2142, similar to what has been suggested for mini-halos, or by secondary electrons generated by hadronic collisions in the ICM. On the other hand, the steeper ridge may probe particle re-acceleration by turbulence generated either by stirring the gas and magnetic fields on a larger scale or by less energetic mechanisms, such as continuous infall of galaxy groups or an off-axis merger.
We present an interferometric measurement of the Sunyaev-Zeldovich effect (SZE) at 1 cm for the galaxy cluster Abell 2163. We combine this data point with previous measurements at 1.1, 1.4, and 2.1 mm from the SuZIE experiment to construct the most c omplete SZE spectrum to date. The intensity in four wavelength bands is fit to determine the central Compton y-parameter (y_c) and the peculiar velocity (v_p) for this cluster. Our results are y_c=3.56(+0.41/-0.41)(+0.27/-0.19) x 10^-4 and v_p=410(+1030/-850)(+460/-440) km/s where we list statistical and systematic uncertainties, respectively, at 68% confidence. These results include corrections for contamination by Galactic dust emission. We find less contamination by dust emission than previously reported. The dust emission is distributed over much larger angular scales than the cluster signal and contributes little to the measured signal when the details of the SZE observing strategy are taken into account.
124 - T. Venturi 2011
Deep radio observations of the galaxy cluster Abell 781 have been carried out using the Giant Metrewave Radio Telescope at 325 MHz and have been compared to previous 610 MHz observations and to archival VLA 1.4 GHz data. The radio emission from the c luster is dominated by a diffuse source located at the outskirts of the X-ray emission, which we tentatively classify as a radio relic. We detected residual diffuse emission at the cluster centre at the level of S(325 MHz)~15-20 mJy. Our analysis disagrees with Govoni et al. (2011), and on the basis of simple spectral considerations we do not support their claim of a radio halo with flux density of 20-30 mJy at 1.4 GHz. Abell 781, a massive and merging cluster, is an intriguing case. Assuming that the residual emission is indicative of the presence of a radio halo barely detectable at our sensitivity level, it could be a very steep spectrum source.
Abell 2163 at $z simeq 0.201$ is one of the most massive galaxy clusters known, very likely in a post-merging phase. Data from several observational windows suggest a complex mass structure with interacting subsystems, which makes the reconstruction of a realistic merging scenario very difficult. A missing key element in this sense is unveiling the cluster mass distribution at high resolution. We perform such a reconstruction of the cluster inner total mass through a strong lensing model based on new spectroscopic redshift measurements. We use data from the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT) to confirm 12 multiple images of 4 sources with redshift values from 1.16 to 2.72. We also discover four new multiple images and identify 29 cluster members and 35 foreground and background sources. The resulting galaxy member and image catalogs are used to build five cluster total mass models. The fiducial model consists of 111 small-scale subhalos plus a diffuse component, which is centered $sim2$ arcseconds away from the BCG belonging to the east Abell 2163 subcluster. We confirm that the latter is well represented by a single, large-scale mass component. Its strong elongation towards a second (west) subcluster confirms the existence of a preferential axis, corresponding to the merging direction. From the fiducial model, we extrapolate the cumulative projected total mass profile and measure a value of $M(<300,$kpc$) = 1.43^{+0.07}_{-0.06}times 10^{14},$M$_{odot}$, which has a significantly reduced statistical error compared with previous estimates, thanks to the inclusion of the spectroscopic redshifts. Our strong lensing results are very accurate: the model-predicted positions of the multiple images are, on average, only $0.15$ arcseconds away from the observed ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا