ﻻ يوجد ملخص باللغة العربية
The Milky Way Galaxy contains a large, spherical component which is believed to harbor a substantial amount of unseen matter. Recent observations indirectly suggest that as much as half of this ``dark matter may be in the form of old, very cool white dwarfs, the remnants of an ancient population of stars as old as the Galaxy itself. We conducted a survey to find faint, cool white dwarfs with large space velocities, indicative of their membership in the Galaxys spherical halo component. The survey reveals a substantial, directly observed population of old white dwarfs, too faint to be seen in previous surveys. This newly discovered population accounts for at least 2% of the halo dark matter. It provides a natural explanation for the indirect observations, and represents a direct detection of Galactic halo dark matter.
We study the effects of substructure in the Galactic halo on direct detection of dark matter, on searches for energetic neutrinos from WIMP annihilation in the Sun and Earth, and on the enhancement in the WIMP annihilation rate in the halo. Our centr
We reply to the criticism of Gibson & Flynn and of Graff regarding Direct detection of galactic halo dark matter by Oppenheimer et al. (2001) (Science, Vol. 292, p. 698), which reported on the discovery of a significant population of halo white dwarf
The next generation of axion direct detection experiments may rule out or confirm axions as the dominant source of dark matter. We develop a general likelihood-based framework for studying the time-series data at such experiments, with a focus on the
Sub-GeV mass dark matter particles whose collisions with nuclei would not deposit sufficient energy to be detected, could instead be revealed through their interaction with electrons. Analyses of data from direct detection experiments usually require
Several direct detection experiments, including recently CDMS-II, have reported signals consistent with 5 to 10 GeV dark matter (DM) that appear to be in tension with null results from XENON and LUX experiments; these indicate a careful review of the