ترغب بنشر مسار تعليمي؟ اضغط هنا

NICS-TNG low-resolution 0.85-2.45um spectra of L-Dwarfs: a near-infrared spectral classification scheme for faint dwarfs

67   0   0.0 ( 0 )
 نشر من قبل Leonardo Testi
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. Testi




اسأل ChatGPT حول البحث

We present complete near-infrared (0.85-2.45 um), low-resolution (~100) spectra of a sample of 26 disk L-dwarfs with reliable optical spectral type classification. The observations have been obtained with NICS at the TNG using a prism-based optical element (the Amici device) that provides a complete spectrum of the source on the detector. Our observations show that low-resolution near-infrared spectroscopy can be used to determine the spectral classification of L-dwarfs in a fast but accurate way. We present a library of spectra that can be used as templates for spectral classification of faint dwarfs. We also discuss a set of near-infrared spectral indices well correlated with the optical spectral types that can be used to accurately classify L-dwarfs earlier than L6.



قيم البحث

اقرأ أيضاً

386 - Yu. Lyubchik 2007
We present an analysis of high resolution spectra in the J band of five ultra cool dwarfs from M6 to L0. A new ab initio water vapour line list and existing line lists of FeH and CrH were used for spectra modelling. We find a good fit for the Mn I 12 899.76 A line. This feature is one of the few for which we have a reliable oscillator strength. Other atomic features are present but most of the observed features are FeH and water lines. While we are uncertain about the quality of many of the atomic line parameters, the FeH and CrH line lists predict a number of features which are not apparent in our observed spectra. We infer that the main limiting factor in our spectral analysis is the FeH and CrH molecular spectra.
We present a library of near-infrared (1.1-2.45 microns) medium-resolution (R~1500-2000) integral field spectra of 15 young M6-L0 dwarfs, composed of companions with known ages and of isolated objects. We use it to (re)derive the NIR spectral types, luminosities and physical parameters of the targets, and to test (BT-SETTL, DRIFT-PHOENIX) atmospheric models. We derive infrared spectral types L0+-1, L0+-1, M9.5+-0.5, M9.5+-0.5, M9.25+-0.25, M8+0.5-0.75, and M8.5+-0.5 for AB Pic b, Cha J110913-773444, USco CTIO 108B, GSC 08047-00232 B, DH Tau B, CT Cha b, and HR7329B, respectively. BT-SETTL and DRIFT-PHOENIX models yield close Teff and log g estimates for each sources. The models seem to evidence a 600-300+600 K drop of the effective temperature at the M-L transition. Assuming the former temperatures are correct, we derive new mass estimates which confirm that DH Tau B, USco CTIO 108B, AB Pic b, KPNO Tau 4, OTS 44, and Cha1109 lay inside or at the boundary of the planetary mass range. We combine the empirical luminosities of the M9.5-L0 sources to the Teff to derive semi-empirical radii estimates that do not match hot-start evolutionary models predictions at 1-3 Myr. We use complementary data to demonstrate that atmospheric models are able to reproduce the combined optical and infrared spectral energy distribution, together with the near-infrared spectra of these sources simultaneously. But the models still fail to represent the dominant features in the optical. This issue casts doubts on the ability of these models to predict correct effective temperatures from near-infrared spectra alone. We advocate the use of photometric and spectroscopic data covering a broad range of wavelengths to study the properties of very low mass young companions to be detected with the planet imagers (Subaru/SCExAO, LBT/LMIRCam, Gemini/GPI, VLT/SPHERE).
We present near-infrared (1.0-2.4 micron) spectra confirming the youth and cool effective temperatures of 6 brown dwarfs and low mass stars with circumstellar disks toward the Chamaeleon II and Ophiuchus star forming regions. The spectrum of one of o ur objects indicates that it has a spectral type of ~L1, making it one of the latest spectral type young brown dwarfs identified to date. Comparing spectra of young brown dwarfs, field dwarfs, and giant stars, we define a 1.49-1.56 micron H2O index capable of determining spectral type to within 1 sub-type, independent of gravity. We have also defined an index based on the 1.14 micron sodium feature that is sensitive to gravity, but only weakly dependent on spectral type for field dwarfs. Our 1.14 micron Na index can be used to distinguish young cluster members (t <~ 5 Myr) from young field dwarfs, both of which may have the triangular H-band continuum shape which persists for at least tens of Myr. Using effective temperatures determined from the spectral types of our objects along with luminosities derived from near and mid-infrared photometry, we place our objects on the H-R diagram and overlay evolutionary models to estimate the masses and ages of our young sources. Three of our sources have inferred ages (t ~= 10-30 Myr) significantly older than the median stellar age of their parent clouds (1-3 Myr). For these three objects, we derive masses ~3 times greater than expected for 1-3 Myr old brown dwarfs with the bolometric luminosities of our sources. The large discrepancies in the inferred masses and ages determined using two separate, yet reasonable methods, emphasize the need for caution when deriving or exploiting brown dwarf mass and age estimates.
We develop a method to identify the spectroscopic signature of unresolved L-dwarf ultracool companions, which compares the spectra of candidates and their associated control stars using spectral ratio differences and residual spectra. We present SpeX prism-mode spectra (0.7-2.5 micron) for a pilot sample of 111 mid M dwarfs, including 28 that were previously identified as candidates for unresolved ultracool companionship (a sub-sample from Cook et al. 2016; paper 1) and 83 single M dwarfs that were optically colour-similar to these candidates (which we use as `control stars). We identify four candidates with evidence for near-infrared excess. One of these (WISE J100202.50+074136.3) shows strong evidence for an unresolved L dwarf companion in both its spectral ratio difference and its residual spectra, two most likely have a different source for the near-infrared excess, and the other may be due to spectral noise. We also establish expectations for a null result (i.e. by searching for companionship signatures around the M dwarf control stars), as well as determining the expected outcome for ubiquitous companionship (as a means of comparison with our actual results), using artificially generated unresolved M+L dwarf spectra. The results of these analyses are compared to those for the candidate sample, and reasonable consistency is found. With a full follow-up programme of our candidates sample from Cook et al., we might expect to confirm up to 40 such companions in the future, adding extensively to the known desert population of M3-M5 dwarfs.
We present observations of 36 late-M dwarfs obtained with the KeckII/NIRSPEC in the J-band at a resolution of sim20,000. We have measured projected rotational velocities, absolute radial velocities, and pseudo-equivalent widths of atomic lines. 12 of our targets did not have previous measurements in the literature. For the other 24 targets, we confirm previously reported measurements. We find that 13 stars from our sample have vsini below our measurement threshold (12 km/s) whereas four of our targets are fast rotators (vsini > 30 km/s). As fast rotation causes spectral features to be washed out, stars with low projected rotational velocities are sought for radial velocity surveys. At our intermediate spectral resolution we have confirmed the identification of neutral atomic lines reported in Mclean et al. 2007. We also calculated pseudo-equivalent widths (p-EW) of 12 atomic lines. Our results confirm that the p-EW of K I lines are strongly dependent on spectral types. We observe that the p-EW of Fe I and Mn I lines remain fairly constant with later spectral type. We suggest that those lines are particularly suitable for deriving metallicities for late-M dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا