ترغب بنشر مسار تعليمي؟ اضغط هنا

PMN J1632-0033: A new gravitationally lensed quasar

316   0   0.0 ( 0 )
 نشر من قبل Joshua N. Winn
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a gravitationally lensed quasar resulting from our survey for lenses in the southern sky. Radio images of PMN J1632-0033 with the VLA and ATCA exhibit two compact, flat-spectrum components with separation 1.47 and flux density ratio 13.2. Images with the HST reveal the optical counterparts to the radio components and also the lens galaxy. An optical spectrum of the bright component, obtained with the first Magellan telescope, reveals quasar emission lines at redshift 3.42. Deeper radio images with MERLIN and the VLBA reveal a faint third radio component located near the center of the lens galaxy, which is either a third image of the background quasar or faint emission from the lens galaxy.



قيم البحث

اقرأ أيضاً

The radio-loud quasar PMN J0134-0931 was discovered to have an unusual morphology during our search for gravitational lenses. In VLA and MERLIN images, there are 5 compact components with maximum separation 681 millarcseconds. All of these components have the same spectral index from 5 GHz to 43 GHz. In a VLBA image at 1.7 GHz, a curved arc of extended emission joins two of the components in a manner suggestive of gravitational lensing. At least two of the radio components have near-infrared counterparts. We argue that this evidence implies that J0134-0931 is a gravitational lens, although we have not been able to devise a plausible model for the foreground gravitational potential. Like several other radio-loud lenses, the background source has an extraordinarily red optical counterpart.
The quasar SDSS J133401.39+331534.3 at z = 2.426 is found to be a two-image gravitationally lensed quasar with the image separation of 0.833. The object is first identified as a lensed quasar candidate in the Sloan Digital Sky Survey Quasar Lens Sear ch, and then confirmed as a lensed system from follow-up observations at the Subaru and University of Hawaii 2.2-meter telescopes. We estimate the redshift of the lensing galaxy to be 0.557 based on absorption lines in the quasar spectra as well as the color of the galaxy. In particular, we observe the system with the Subaru Telescope AO188 adaptive optics with laser guide star, in order to derive accurate astrometry, which well demonstrates the usefulness of the laser guide star adaptive optics imaging for studying strong lens systems. Our mass modeling with improved astrometry implies that a nearby bright galaxy $sim 4$ apart from the lensing galaxy is likely to affect the lens potential.
55 - L.V.E. Koopmans 2001
A single-screen model of the gravitational lens system 2016+112 is proposed, that explains recent Hubble Space Telescope} (HST) infrared (NICMOS-F160W) observations and new high-resolution European VLBI Network (EVN) 5-GHz radio observations, present ed in this paper. In particular, we find that a massive `dark structure at the lens position, previously suggested by X-ray, optical and spectroscopic observations of the field around 2016+112, is not necessarily required to accommodate the strong lensing constraints. A massive structure to the north-west of the lens system, suggested from a weak-lensing analysis of the field, is included in the model. The lensed source is an X-ray bright active galaxy at z=3.273 with a central bright optical continuum core and strong narrow emission lines, suggestive of a type-II quasar. The EVN 5-GHz radio maps show a radio-jet structure with at least two compact subcomponents. We propose that the diamond caustic crosses the counter-jet of the radio source, so that part of the counter-jet, host galaxy and narrow-line emission regions are quadruply imaged. The remainder of the radio source, including the core, is doubly imaged. Our lens model predicts a very high magnification (mu~300) at the bightness peaks of the inner two radio components of complex C. If the jet exhibits relativistic velocities on micro-arsecond scales, it might result in apparent hyperluminal motion. However, the lack of strong radio variability and the peaked radio spectrum imply that these motions need not be present in the source. Our model furthermore implies that the optical spectrum of C can only show features of the AGN and its host galaxy.
We report follow-up observations of two gravitational lens candidates identified in the Sloan Digital Sky Survey (SDSS) dataset. We have confirmed that SDSS J102111.02+491330.4 is a previously unknown gravitationally lensed quasar. This lens system e xhibits two images of a $z = 1.72$ quasar, with an image separation of $1{farcs}14 pm 0.04$. Optical and near-IR imaging of the system reveals the presence of the lensing galaxy between the two quasar images. Observations of SDSS J112012.12+671116.0 indicate that it is more likely a binary quasar than a gravitational lens. This system has two quasars at a redshift of $z = 1.49$, with an angular separation of $1{farcs}49 pm 0.02$. However, the two quasars have markedly different SEDs and no lens galaxy is apparent in optical and near-IR images of this system. We also present a list of 31 SDSS lens candidates which follow-up observations have confirmed are textit{not} gravitational lenses.
We report the discovery of a new two-image gravitationally lensed quasar, SDSS J024634.11-082536.2 (SDSS J0246-0825). This object was selected as a lensed quasar candidate from the Sloan Digital Sky Survey (SDSS) by the same algorithm that was used t o discover other SDSS lensed quasars (e.g., SDSS J0924+0219). Multicolor imaging with the Magellan Consortiums Walter Baade 6.5-m telescope and the spectroscopic observations using the W. M. Keck Observatorys Keck II telescope confirm that SDSS J0246-0825 consists of two lensed images ($Delta{theta}=$1farcs04) of a source quasar at z=1.68. Imaging observations with the Keck telescope and the Hubble Space Telescope reveal an extended object between the two quasar components, which is likely to be a lensing galaxy of this system. From the absorption lines in the spectra of quasar components and the apparent magnitude of the galaxy, combined with the expected absolute magnitude from the Faber-Jackson relation, we estimate the redshift of the lensing galaxy to be z=0.724. A highly distorted ring is visible in the Hubble Space Telescope images, which is likely to be the lensed host galaxy of the source quasar. Simple mass modeling predicts the possibility that there is a small (faint) lensing object near the primary lensing galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا