ﻻ يوجد ملخص باللغة العربية
The absorption feature detected in the prompt X-ray emission of GRB 990705 bears important consequences. We investigate different production mechanisms and we conclude that the absorbing material cannot be very close to the burster and is likely to be moderately clumped. These properties challenge any model in which the burst explodes in coincidence with the core-collapse of a massive rotating star. We show that the straightforward interpretation of the absorption feature as a photoionization K edge of neutral iron faces a severe problem in that it requires a huge amount of iron in the close vicinity of the burster. We then discuss an alternative scenario, in which iron ions are kept in a high ionization state by the burst flux, and the absorption feature is produced by resonant scattering from hydrogen-like iron, broadened by a range outflow velocities. In this case the physical conditions and geometry of the absorbing material are fully consistent with the presence of a young supernova remnant surrounding the burst site at a radius R ~ 10^{16} cm. We finally discuss how this remnant might affect the generation of afterglows with a standard power-law flux decay.
GRB 190114C was a bright burst that occurred in the local Universe (z=0.425). It was the first gamma-ray burst (GRB) ever detected at TeV energies, thanks to MAGIC. We characterize the ambient medium properties of the host galaxy through the study of
We report on observation results of the prompt X- and gamma-ray emission from GRB011211. This event was detected with the Gamma-Ray Burst Monitor and one of the Wide Field Cameras aboard the BeppoSAX satellite. The optical counterpart to the GRB was
Using a detailed model of the internal shock phase, we discuss the origin of the prompt emission in gamma-ray bursts. We focus on the identification of the dominant radiative process (Fermi-GBM range) and propose an explanation for some features obse
We report on the energy-resolved timing and phase-resolved spectral analysis of X-ray emission from PSR J0659+1414 observed with XMM-Newton and NuSTAR. We find that the new data rule out the previously suggested model of the phase-dependent spectrum
From a sample of GRBs detected by the $Fermi$ and $Swift$ missions, we have extracted the minimum variability time scales for temporal structures in the light curves associated with the prompt emission and X-ray flares. A comparison of this variabili