ﻻ يوجد ملخص باللغة العربية
The z ~ 0.701 absorption system towards the QSO PG1718+4807 is the only example of a QSO absorption system which might have a deuterium/hydrogen ratio approximately ten times the value found towards other QSOs. We have obtained new STIS spectra from the Hubble Space Telescope of the Lyman alpha and Lyman limit regions of the system. These spectra give the redshift and velocity dispersion of the neutral hydrogen which produces most of the observed absorption. The Lyman alpha line is too narrow to account for all of the observed absorption. It was previously known that extra absorption is needed on the blue side of the main H I near to the expected position of deuterium. The current data suggests with a 98% confidence level that the extra absorption is not deuterium. Some uncertainty persists because we have a low signal to noise ratio and the extra absorption - be it deuterium or hydrogen - is heavily blended with the Lyman alpha absorption from the main hydrogen component.
We report a further analysis of the ratio of deuterium to hydrogen (D/H) using HST spectra of the z=0.701 Lyman limit system towards the QSO PG1718+481. Initial analyses of this absorber found it gave a high D/H value, 1.8 - 3.1 times 10^{-4} (Webb e
The metal-poor damped Lyman alpha (DLA) system at z = 3.04984 in the QSO SDSSJ1419+0829 has near-ideal properties for an accurate determination of the primordial abundance of deuterium, (D/H)_p. We have analysed a high-quality spectrum of this object
Deuterium abundances measured recently from QSO absorption-line systems lie in the range from 3 10^{-5} to 3 10^{-4}, which shed some questions on standard big bang theory. We show that this discordance may simply be an artifact caused by inadequate
The current status of extragalactic deuterium abundance is discussed using two examples of `low and `high D/H measurements. We show that the discordance of these two types of D abundances may be a consequence of the spatial correlations in the stocha
We report the discovery of deuterium absorption in the very metal-poor ([Fe/H] = -2.88) damped Lyman-alpha system at z_abs = 3.06726 toward the QSO SDSS J1358+6522. On the basis of 13 resolved D I absorption lines and the damping wings of the H I Lym