ﻻ يوجد ملخص باللغة العربية
We present self-consistent general relativistic simulations of stellar core collapse, bounce, and postbounce evolution for 13, 15, and 20 solar mass progenitors in spherical symmetry. Our simulations implement three-flavor Boltzmann neutrino transport and standard nuclear physics. The results are compared to our corresponding simulations with Newtonian hydrodynamics and O(v/c) Boltzmann transport.
In this paper, we present results from a simulation of stellar core collapse, bounce, and postbounce evolution with Boltzmann neutrino transport. We motivate the development of our Boltzmann solver in light of the sensitivity of the neutrino-heating
General relativistic multi-group and multi-flavor Boltzmann neutrino transport in spherical symmetry adds a new level of detail to the numerical bridge between microscopic nuclear and weak interaction physics and the macroscopic evolution of the astr
We develop a neutrino transfer code for core-collapse simulations, that directly solves the multidimensional Boltzmann equations in full general relativity. We employ the discrete ordinate method, which discretizes the six dimensional phase space. Th
We present multi-dimensional core-collapse supernova simulations using the Isotropic Diffusion Source Approximation (IDSA) for the neutrino transport and a modified potential for general relativity in two different supernova codes: FLASH and ELEPHANT
We study the three-dimensional (3D) hydrodynamics of the post-core-bounce phase of the collapse of a 27-solar-mass star and pay special attention to the development of the standing accretion shock instability (SASI) and neutrino-driven convection. To