ﻻ يوجد ملخص باللغة العربية
We present a method for decomposing the cosmological velocity field in a given volume into its divergent component due to the density fluctuations inside the volume, and its tidal component due to the matter distribution outside the volume. The input consists of the density and velocity fields that are reconstructed either by POTENT or by Wiener Filter from a survey of peculiar velocities. The tidal field is further decomposed into a bulk velocity and a shear field. The method is applied here to the Mark III data within a sphere of radius 60 Mpc/h about the Local Group, and to the SFI data for comparison. We find that the tidal field contributes about half of the Local-Group velocity with respect to the CMB, with the tidal bulk velocity pointing to within ~ 30 degrees of the CMB dipole. The eigenvector with the largest eigenvalue of the shear tensor is aligned with the tidal bulk velocity to within ~ 40 degrees. The tidal field thus indicates the important dynamical role of a super attractor of mass (2-5) x 10^17 M_sun/h Omega^0.4 at ~ 150 Mpc/h, coinciding with the Shapley Concentration. There is also a hint for the dynamical role of two big voids in the Supergalactic Plane. The results are consistent for the two data sets and the two methods of reconstruction.
The correlation between the spins of dark matter halos and the large-scale structure (LSS) has been studied in great detail over a large redshift range, while investigations of galaxies are still incomplete. Motivated by this point, we use the state-
Gravitational collapse in cosmological context produces an intricate cosmic web of voids, walls, filaments and nodes. The anisotropic nature of collisionless collapse leads to the emergence of an anisotropic velocity dispersion, or stress, that absor
Studies of intrinsic alignment effects mostly focus on the correlations between shapes of galaxies with each other, or with the underlying density field of the large scale structure of the universe. Lately, the correlation between shapes of galaxies
We study how halo intrinsic dynamical properties are linked to their formation processes for halos in two mass ranges, $10^{12}-10^{12.5}h^{-1}{rm M_odot}$ and $ge 10^{13}h^{-1}{rm M_odot}$, and how both are correlated with the large scale tidal fiel
For several flows of laboratory turbulence, we obtain long records of velocity data. These records are divided into numerous segments. In each segment, we calculate the mean rate of energy dissipation, the mean energy at each scale, and the mean tota