ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Color Observations of the GRB000926 Afterglow

115   0   0.0 ( 0 )
 نشر من قبل Fiona A. Harrison
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present multi-color light-curves of the optical afterglow of GRB 000926. Beginning ~1.5 days after the burst, the light-curves of this GRB steepen measurably. The existence of such achromatic breaks are usually taken to be an important observational signature that the ejecta are not expanding isotropically, but rather have a collimated jet-like geometry. If we interpret the data in this context, we derive an opening angle of 5 degrees, which reduces the energy release compared to an isotropic model by a factor of ~275, to 1.7 x 10^51 erg. To fit the data with a simple jet model requires extinction along the line of sight. The derived A_V is in the range 0.11 - 0.82 mag, depending on the adopted extinction law and whether the electrons giving rise to the optical emission are undergoing synchrotron cooling or not. Since this is in excess of the expected extinction from our Galaxy, we attribute this to the GRB host. We note that this extinction is typical of a galactic disk, and therefore the event likely took place in the disk of its host.



قيم البحث

اقرأ أيضاً

We present the discovery of the Optical Transient (OT) of the long-duration gamma-ray burst GRB000926. The optical transient was detected independently with the Nordic Optical Telescope and at Calar Alto 22.2 hours after the burst. At this time the m agnitude of the transient was R = 19.36. The transient faded with a decay slope of about 1.7 during the first two days after which the slope increased abruptly (within a few hours) to about 2.4. The light-curve started to flatten off after about a week indicating the presence of an underlying extended object. This object was detected in a deep image obtained one month after the GRB at R=23.87+-0.15 and consists of several compact knots within about 5 arcsec. One of the knots is spatially coincident with the position of the OT and hence most likely belongs to the host galaxy. Higher resolution imaging is needed to resolve whether all the compact knots belong to the host galaxy or to several independent objects. In a separate paper we present a discussion of the optical spectrum of the OT, and its inferred redshift (Moller et al. in prep.).
105 - Y. Urata , K.Y. Huang , Y.L. Qiu 2006
Observations of the optical afterglow of GRB 041006 with the Kiso Observatory 1.05 m Schmidt telescope, the Lulin Observatory 1.0 m telescope and the Xinglong Observatory 0.6 m telescope. Three-bands (B, V and R) of photometric data points were obtai ned on 2004 October 6, 0.025-0.329 days after the burst. These very early multi band light curves imply the existence of a color dependent plateau phase. The B-band light curve shows a clear plateau at around 0.03 days after the burst. The R band light curve shows the hint of a plateau, or a possible slope change, at around 0.1 days after the burst. The overall behavior of these multi-band light curves may be interpreted in terms of the sum of two separate components, one showing a monotonic decay the other exhibiting a rising and a falling phase, as described by the standard afterglow model.
GRB 050730 is a long duration high-redshift burst (z=3.967) discovered by Swift. The afterglow shows variability and is well monitored over a wide wavelength range. We present comprehensive temporal and spectral analysis of the afterglow of GRB 05073 0 including observations from the millimeter to X-rays. We use multi-wavelength afterglow data to understand the temporal and spectral decay properties with superimposed variability of this high redshift burst. Five telescopes were used to study the decaying afterglow of GRB 050730 in the B, V, r, R, i, I, J and K photometric pass bands. A spectral energy distribution was constructed at 2.9 hours post-burst in the K, J, I, R, V and B bands. X-ray data from the satellites Swift and XMM-Newton were used to study the afterglow evolution at higher energies. The early afterglow shows variability at early times and shows a steepening at ~0.1 days (8.6 ks) in the B, V, r, R, i, I, J and K passbands. The early afterglow light curve decayed with alpha_1 = -0.60+/-0.07 and alpha_2 = -1.71+/-0.06 based on R and I band data. A millimeter detection of the afterglow around 3 days after the burst shows an excess in comparison to predictions. The early X-ray light curve observed by Swift is complex and contains flares. At late times the X-ray light curve can be fit by a powerlaw alpha_x = -2.5+/-0.15 which is steeper than the optical light curve. A spectral energy distribution (SED) was constructed at ~2.9 hours after the burst. An electron energy index, p, of ~ 2.3 was calculated using the SED and the photon index from the X-ray afterglow spectra and indicates that the synchrotron cooling frequency nu_c is above observed frequencies.
We present observations of the afterglow of GRB 080319B at optical, mm and radio frequencies from a few hours to 67 days after the burst. Present observations along with other published multi-wavelength data have been used to study the light-curves a nd spectral energy distributions of the burst afterglow. The nature of this brightest cosmic explosion has been explored based on the observed properties and its comparison with the afterglow models. Our results show that the observed features of the afterglow fits equally good with the Inter Stellar Matter and the Stellar Wind density profiles of the circum-burst medium. In case of both density profiles, location of the maximum synchrotron frequency $ u_m$ is below optical and the value of cooling break frequency $ u_c$ is below $X-$rays, $sim 10^{4}$s after the burst. Also, the derived value of the Lorentz factor at the time of naked eye brightness is $sim 300$ with the corresponding blast wave size of $sim 10^{18}$ cm. The numerical fit to the multi-wavelength afterglow data constraints the values of physical parameters and the emission mechanism of the burst.
75 - C. Guidorzi 2005
The 2-m robotic Liverpool Telescope reacted promptly to the gamma-ray burst GRB 050502a discovered by INTEGRAL and started observing 3 min after the onset of the GRB. The automatic identification of a bright afterglow of r~15.8 triggered for the firs t time an observation sequence in the BVri filters during the first hour after a GRB. Observations continued for ~1 day using the RoboNet-1.0 network of 2-m robotic telescopes. The light curve in all filters can be described by a simple power law with index of 1.2 +/- 0.1. We find evidence for a bump rising at t~0.02 days in all filters. From the spectrum and the light curve we investigate different interpretative scenarios and we find possible evidence for a uniform circumburst medium with clumps in density, as in the case of GRB 021004. Other interpretations of such bumps, such as the effect of energy injection through refreshed shocks or the result of a variable energy profile, are less favored. The optical afterglow of GRB 050502a is likely to be the result of slow electron cooling with the optical bands lying between the synchrotron peak frequency and the cooling frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا