ﻻ يوجد ملخص باللغة العربية
Thermal instability driven by radiation pressure might be relevant for intrinsically bright accreting sources. The most promising candidate where this instability seems to be at work is one of the two known galactic superluminal sources, GRS 1915+105 (Belloni et al. 1997). In spite of being of relevance, this scenario has not yet been confirmed by proper time-dependent modelling. Non-linear time-dependent calculations performed by Szuszkiewicz and Miller (1998) show that thermally unstable discs undergo limit-cycle behaviour with successive evacuation and refilling of the central parts of the disc. This evolution is very similar to the one proposed by Belloni et al. (1997) in their phenomenological model. Further investigations are needed to confirm the thermal instability being operational in this source. First of all the spectra emitted from the disc during its evolution should be calculated and compared with observations. Here such spectra are computed assuming local blackbody emission from the best studied transonic disc model.
We are carrying out a programme of non-linear time-dependent numerical calculations to study the evolution of the thermal instability driven by radiation pressure in transonic accretion discs around black holes. In our previous studies we first inves
Numerous studies have investigated the role of thermal instability in regulating the phase transition between the cold cloudy and warm diffuse medium of the interstellar medium. Considerable interest has also been devoted in investigating the propert
We numerically construct slim, global, vertically integrated models of optically thin, transonic accretion discs around black holes, assuming a regularity condition at the sonic radius and boundary conditions at the outer radius of the disc and near
Spiral arms have been observed in nearly a dozen protoplanetary discs in near-infrared scattered light and recently also in the sub-millimetre continuum. While one of the most compelling explanations is that they are driven by planetary or stellar co
We evaluated the effect of the laser-induced acoustic desorption (LIAD) process on thermally stable and unstable biomolecules. We found that the thermally labile glycine molecule fragmented following desorption via LIAD, due to the production of hot