ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical and Infrared Spectroscopy of the type IIn SN 1998S : Days 3-127

70   0   0.0 ( 0 )
 نشر من قبل Alexandra Fassia
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present contemporary infrared and optical spectroscopic observations of the type IIn SN 1998S for the period between 3 and 127 days after discovery. In the first week the spectra are characterised by prominent broad emission lines with narrow peaks superimposed on a very blue continuum(T~24000K). In the following two weeks broad, blueshifted absorption components appeared in the spectra and the temperature dropped. By day 44, broad emission components in H and He reappeared in the spectra. These persisted to 100-130d, becoming increasingly asymmetric. We agree with Leonard et al. (2000) that the broad emission lines indicate interaction between the ejecta and circumstellar material (CSM) and deduce that progenitor of SN 1998S appears to have gone through at least two phases of mass loss, giving rise to two CSM zones. Examination of the spectra indicates that the inner zone extended to <90AU, while the outer CSM extended from 185AU to over 1800AU. Analysis of high resolution spectra shows that the outer CSM had a velocity of 40-50 km/s. Assuming a constant velocity, we can infer that the outer CSM wind commenced more than 170 years ago, and ceased about 20 years ago, while the inner CSM wind may have commenced less than 9 years ago. During the era of the outer CSM wind the outflow was high, >2x10^{-5}M_{odot}/yr corresponding to a mass loss of at least 0.003M_{odot} and suggesting a massive progenitor. We also model the CO emission observed in SN 1998S. We deduce a CO mass of ~10^{-3} M_{odot} moving at ~2200km/s, and infer a mixed metal/He core of ~4M_{odot}, again indicating a massive progenitor.



قيم البحث

اقرأ أيضاً

We present contemporaneous optical and infrared photometric observations of the type IIn SN 1998S covering the period between 11 and 146 days after discovery. The infrared data constitute the first ever infrared light curves of a type IIn supernova. We use blackbody and spline fits to the photometry to examine the luminosity evolution. During the first 2--3 months, the luminosity is dominated by the release of shock-deposited energy in the ejecta. After $sim$100 days the luminosity is powered mostly by the deposition of radioactive decay energy from 0.15$pm$0.05 M$_{odot}$ of $^{56}$Ni which was produced in the explosion. We also report the discovery of an astonishingly high infrared (IR) excess, $K-L=2.5$, that was present at day 130. We interpret this as being due to thermal emission from dust grains in the vicinity of the supernova. We argue that to produce such a high IR luminosity so soon after the explosion, the dust must be {it pre-existing} and so is located in the circumstellar medium of the progenitor. The dust could be heated either by the UV/optical flash (IR echo) or by the X-rays from the interaction of the ejecta with the circumstellar material
We present optical and near-infrared photometric and spectroscopic observations of SN 2013ej, in galaxy M74, from 1 to 450 days after the explosion. SN 2013ej is a hydrogen-rich supernova, classified as a Type IIL due to its relatively fast decline f ollowing the initial peak. It has a relatively high peak luminosity (absolute magnitude M$_rm{V}$ = -17.6) but a small $^{56}$Ni production of ~0.023 M$_odot$. Its photospheric evolution is similar to other Type II SNe, with shallow absorption in the H{alpha} profile typical for a Type IIL. During transition to the radioactive decay tail at ~100 days, we find the SN to grow bluer in B - V colour, in contrast to some other Type II supernovae. At late times, the bolometric light curve declined faster than expected from $^{56}$Co decay and we observed unusually broad and asymmetric nebular emission lines. Based on comparison of nebular emission lines most sensitive to the progenitor core mass, we find our observations are best matched to synthesized spectral models with a M$_rm{ZAMS}$ = 12 - 15 M$_odot$ progenitor. The derived mass range is similar to but not higher than the mass estimated for Type IIP progenitors. This is against the idea that Type IIL are from more massive stars. Observations are consistent with the SN having a progenitor with a relatively low-mass envelope.
HST and ground based observations of the Type IIn SN 2010jl are analyzed, including photometry, spectroscopy in the ultraviolet, optical and NIR bands, 26-1128 days after first detection. At maximum the bolometric luminosity was $sim 3times10^{43}$ e rg/s and even at 850 days exceeds $10^{42}$ erg/s. A NIR excess, dominating after 400 days, probably originates in dust in the circumstellar medium (CSM). The total radiated energy is $> 6.5times10^{50}$ ergs, excluding the dust component. The spectral lines can be separated into one broad component due to electron scattering, and one narrow with expansion velocity $sim 100$ km/s from the CSM. The broad component is initially symmetric around zero velocity but becomes blueshifted after $sim 50$ days, while remaining symmetric about a shifted centroid velocity. Dust absorption in the ejecta is unlikely to explain the line shifts, and we attribute the shift instead to acceleration by the SN radiation. From the optical lines and the X-ray and dust properties, there is strong evidence for large scale asymmetries in the CSM. The ultraviolet lines indicate CNO processing in the progenitor, while the optical shows a number of narrow coronal lines excited by the X-rays. The bolometric light curve is consistent with a radiative shock in an $r^{-2}$ CSM with a mass loss rate of $sim 0.1$ M_sun/yr. The total mass lost is $> 3$ M_sun. These properties are consistent with the SN expanding into a CSM characteristic of an LBV progenitor with a bipolar geometry. The apparent absence of nuclear processing is attributed to a CSM still opaque to electron scattering.
We present optical and near-infrared (NIR) photometry and spectroscopy of the Type IIb supernova (SN) 2011dh for the first 100 days. We complement our extensive dataset with SWIFT ultra-violet (UV) and Spitzer mid-infrared (MIR) data to build a UV to MIR bolometric lightcurve using both photometric and spectroscopic data. Hydrodynamical modelling of the SN based on this bolometric lightcurve have been presented in Bersten (2012). We find that the absorption minimum for the hydrogen lines is never seen below ~11000 km/s but approaches this value as the lines get weaker. This suggests that the interface between the helium core and hydrogen rich envelope is located near this velocity in agreement with the Bersten et al. (2012) He4R270 ejecta model. Spectral modelling of the hydrogen lines using this ejecta model supports the conclusion and we find a hydrogen mass of 0.01-0.04 solar masses to be consistent with the observed spectral evolution. We estimate that the photosphere reaches the helium core at 5-7 days whereas the helium lines appear between ~10 and ~15 days, close to the photosphere and then move outward in velocity until ~40 days. This suggests that increasing non-thermal excitation due to decreasing optical depth for the gamma-rays is driving the early evolution of these lines. We also provide and discuss pre- and post-explosion observations of the SN site which shows a reduction by 75 percent in flux at the position of the yellow supergiant coincident with SN 2011dh. The B, V and r band decline rates of 0.0073, 0.0090 and 0.0053 mag/day respectively are consistent with the remaining flux being emitted by the SN. Hence we find that the star was indeed the progenitor of SN 2011dh as previously suggested by Maund et al. (2011) and which is also consistent with the results from the hydrodynamical modelling.
46 - M. Pozzo 2004
We present late-time near-infrared (NIR) and optical observations of the type IIn SN 1998S. The NIR photometry spans 333-1242 days after explosion, while the NIR and optical spectra cover 333-1191 days and 305-1093 days respectively. The NIR photomet ry extends to the M-band (4.7 mu), making SN 1998S only the second ever supernova for which such a long IR wavelength has been detected. The shape and evolution of the H alpha and HeI 1.083 mu line profiles indicate a powerful interaction with a progenitor wind, as well as providing evidence of dust condensation within the ejecta. The latest optical spectrum suggests that the wind had been flowing for at least 430 years. The intensity and rise of the HK continuum towards longer wavelengths together with the relatively bright L and M magnitudes shows that the NIR emission was due to hot dust newly-formed in supernovae may provide the ejecta and/or pre-existing dust in the progenitor circumstellar medium (CSM). [ABRIDGED] Possible origins for the NIR emission are considered. Significant radioactive heating of ejecta dust is ruled out, as is shock/X-ray-precursor heating of CSM dust. More plausible sources are (a) an IR-echo from CSM dust driven by the UV/optical peak luminosity, and (b) emission from newly-condensed dust which formed within a cool, dense shell produced by the ejecta shock/CSM interaction. We argue that the evidence favours the condensing dust hypothesis, although an IR-echo is not ruled out. Within the condensing-dust scenario, the IR luminosity indicates the presence of at least 0.001 solar masses of dust in the ejecta, and probably considerably more. Finally, we show that the late-time intrinsic (K-L) evolution of type II supernovae may provide a useful tool for determining the presence or absence of a massive CSM around their progenitor stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا