ﻻ يوجد ملخص باللغة العربية
The results of a new spectroscopic survey of 66 $z simgt 4$ quasars for Damped Lyman-alpha absorption systems are presented. The search led to the discovery of 30 new DLA candidates which are analysed in order to compute the comoving mass density of neutral gas in a non-zero lambda Universe. The possible sources of uncertainty are discussed and the implications of our results for the theories of galaxy formation and evolution are emphasized. A subsequent paper will present details of the calculations summarised here and a more extensive explanation of the consequences of our observations for the understanding of the nature of DLAs.
We have collected data for 69 Damped Lyman-alpha (DLA) systems, to investigate the chemical evolution of galaxies in the redshift interval 0.0 < z < 4.4. In doing that, we have adopted the most general approach used so far to correct for dust depleti
Based on the disk galaxy formation theory within the framework of standard LCDM hierarchical picture, we selected modelled DLAs, according to their observational criterion, by Monte Carlo simulation with the random inclinations being considered, to e
We present a sample of 33 damped Lyman alpha systems (DLAs) discovered in the Sloan Digital Sky Survey (SDSS) whose absorption redshifts (z_abs) are within 6000 km/s of the QSOs systemic redshift (z_sys). Our sample is based on 731 2.5 < z_sys < 4.5
We consider the questions of whether the damped Lyman-alpha (DLA) and sub-DLA absorbers in quasar spectra differ intrinsically in metallicity, and whether they could arise in galaxies of different masses. Using the recent measurements of the robust m
Gas flows in and out of galaxies through their circumgalactic medium (CGM) are poorly constrained and direct observations of this faint, diffuse medium remain challenging. We use a sample of five $z$ $sim$ 1-2 galaxy counterparts to Damped Lyman-$alp