ﻻ يوجد ملخص باللغة العربية
Using the U.C. Berkeley Infrared Spatial Interferometer with an RF filterbank, the first interferometric observations of mid-infrared molecular absorption features of ammonia (NH_3) and silane (SiH_4) with very high spectral resolution (R ~ 100000) were made. Under the assumptions of spherical symmetry and uniform outflow, these new data permitted the molecular stratification around carbon star IRC+10216 and red supergiant VY CMa to be investigated. For IRC+10216, both ammonia and silane were found to form in the dusty outflow significantly beyond both the dust formation and gas acceleration zones. Specifically, ammonia was found to form before silane in a region of decaying gas turbulence (>~ 20 R_star), while the silane is produced in a region of relatively smooth gas flow much further from the star (>~ 80 R_star). The depletion of gas-phase SiS onto grains soon after dust formation may fuel silane-producing reactions on the grain surfaces. For VY CMa, a combination of interferometric and spectral observations suggest that NH_3 is forming near the termination of the gas acceleration phase in a region of high gas turbulence (~ 40 R_star).
The U. C. Berkeley Infrared Spatial Interferometer has measured the mid-infrared visibilities of the carbon star IRC+10216 and the red supergiant VY CMa. The dust shells around these sources have been previously shown to be time-variable, and these n
The U. C. Berkeley Infrared Spatial Interferometer has been outfitted with a filterbank system to allow interferometric observations of mid-infrared spectral lines with very high spectral resolution (R ~ 10^5). This paper describes the design, implem
New high-resolution far-infrared (FIR) observations of both ortho- and para-NH3 transitions toward IRC+10216 were obtained with Herschel, with the goal of determining the ammonia abundance and constraining the distribution of NH3 in the envelope of I
A single dish monitoring of millimeter maser lines SiS J=14-13 and HCN nu_2 = 1^f J=3-2 and several other rotational lines is reported for the archetypal carbon star IRC+10216. Relative line strength variations of 5%~30% are found for eight molecular
We present mid- and far- IR imaging of four famous hypergiant stars: the red supergiants $mu$ Cep and VY CMa, and the warm hypergiants IRC +10420 and $rho$ Cas. Our 11 to 37 $mu$m SOFIA/FORCAST imaging probes cool dust not detected in visual and near