ﻻ يوجد ملخص باللغة العربية
We present optical I-band light curves of the gravitationally lensed double QSO B1600+434 from observations obtained at the Nordic Optical Telescope (NOT) between April 1998 and November 1999. The photometry has been performed by simultaneous deconvolution of all the data frames, involving a numerical lens galaxy model. Four methods have been applied to determine the time delay between the two QSO components, giving a mean estimate of Delta_t = 51+/-4 days (95% confidence level). This is the fourth optical time delay ever measured. Adopting a Omega=0.3, Lambda=0 Universe and using the mass model of Maller et al. (2000), this time-delay estimate yields a Hubble parameter of H_0=52 (+14, -8) km s^-1 Mpc^-1 (95% confidence level) where the errors include time-delay as well as model uncertainties. There are time-dependent offsets between the two (appropriately shifted) light curves that indicate the presence of external variations due to microlensing.
We present Very Large Array (VLA) 8.5-GHz light curves of the two lens images of the Cosmic Lens All Sky Survey (CLASS) gravitational lens B1600+434. We find a nearly linear decrease of 18-19% in the flux densities of both lens images over a period o
In the gravitational lens system B1600+434 the brighter image, A, is known to show rapid variability which is not detected in the weaker image, B (Koopmans & de Bruyn 2000). Since correlated variability is one of the fundamental properties of gravita
We present an analysis of archival multi-frequency Very Large Array monitoring data of the two-image gravitational lens system CLASS B1600+434, including the polarization properties at 8.5 GHz. From simulating radio light curves incorporating realist
We report on the results of a spectroscopic survey of the environments of the gravitational lens systems CLASS B1600+434 (z_l = 0.41, z_s = 1.59) and CLASS B2319+051 (z_l = 0.62). The B1600+434 system has a time delay measured for it, and we find the
First, we review the current status of the detection of strong `external variability in the CLASS gravitational B1600+434, focusing on the 1998 VLA 8.5-GHz and 1998/9 WSRT multi-frequency observations. We show that this data can best be explained in