ترغب بنشر مسار تعليمي؟ اضغط هنا

Star formation in expanding shells

67   0   0.0 ( 0 )
 نشر من قبل Sona Ehlerova
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the induced star formation in dense walls of expanding shells. The fragmentation process is studied using the linear perturbation theory. The influence of the energy input, the ISM distribution and the ISM speed of sound is examined analytically and by numerical simulations. We formulate the universal condition for the gravitational fragmentation of expanding shells: if the total surface density of the disk is higher than a certain critical value, shells are unstable. The value of the critical density depends on the energy of the shell and the sound speed in the ISM.



قيم البحث

اقرأ أيضاً

68 - S. Ehlerova , J. Palous 2001
We discuss fragmentation processes which induce star formation in dense walls of expanding shells. The influence of the energy input, the ISM scale-height and speed of sound in the ambient medium is tested. We formulate the condition for the gravitat ional fragmentation of expanding shells: if the total surface density of the disc is higher than a certain critical value, shells are unstable. The value of the critical density depends on the energy of the shell and the sound speed in the ISM.
139 - Laura G. Book 2009
We examine the recent star formation associated with four supergiant shells (SGSs) in the Large Magellanic Cloud (LMC): LMC 1, 4, 5, and 6, which have been shown to have simple expanding-shell structures. H II regions and OB associations are used to infer star formation in the last few Myr, while massive young stellar objects (YSOs) reveal the current ongoing star formation. Distributions of ionized, H I, and molecular components of the interstellar gas are compared with the sites of recent and current star formation to determine whether triggering has taken place. We find that a great majority of the current star formation has occurred in gravitationally unstable regions, and that evidence of triggered star formation is prevalent at both large and local scales.
W49A is a giant molecular cloud which harbors some of the most luminous embedded clusters in the Galaxy. However, the explanation for this starburst-like phenomenon is still under debate. Methods. We investigated large-scale Spitzer mid-infrared imag es together with a Galatic Ring Survey 13CO J = 1-0 image, complemented with higher resolution (~ 11 arcsec) 13CO J = 2-1 and C18O J = 2-1 images over a ~ 15 x 13 pc^2 field obtained with the IRAM 30m telescope. Two expanding shells have been identified in the mid-infrared images, and confirmed in the position-velocity diagrams made from the 13CO J = 2-1 and C18O J = 2-1 data. The mass of the averaged expanding shell, which has an inner radius of ~ 3.3 pc and a thickness of ~ 0.41 pc, is about 1.9 x 10^4 M*. The total kinetic energy of the expanding shells is estimated to be ~ 10^49 erg which is probably provided by a few massive stars, whose radiation pressure and/or strong stellar winds drive the shells. The expanding shells are likely to have a common origin close to the two ultracompact Hii regions (source O and source N), and their expansion speed is estimated to be ~ 5 km/s, resulting in an age of ~ 3-7 x 10^5 years. In addition, on larger (~ 35 x 50 pc^2) scales, remnants of two gas ejections have been identified in the 13CO J = 1 - 0 data. Both ejections seem to have the same center as the expanding shells with a total energy of a few times 10^50 erg. The main driving mechanism for the gas ejections is unclear, but likely related to the mechanism which triggers the starburst in W49A.
We present the discovery of expanding spherical shells around low to intermediate-mass young stars in the Orion A giant molecular cloud using observations of $^{12}$CO (1-0) and $^{13}$CO (1-0) from the Nobeyama Radio Observatory 45-meter telescope. The shells have radii from 0.05 to 0.85 pc and expand outward at 0.8 to 5 km/s. The total energy in the expanding shells is comparable to protostellar outflows in the region. Together, shells and outflows inject enough energy and momentum to maintain the cloud turbulence. The mass-loss rates required to power the observed shells are two to three orders of magnitude higher than predicted for line-driven stellar winds from intermediate-mass stars. This discrepancy may be resolved by invoking accretion-driven wind variability. We describe in detail several shells in this paper and present the full sample in the online journal.
68 - S. Ehlerova 1997
Conditions for the fragmentation of expanding shells due to gravitational instability are discussed. The self-similar analytical solution is compared with the results of 3-dimensional computer simulations for the expansion into homogeneous media. For realistic galactic disks we show that the formation of fragments is influenced by the amount of energy supply from the final number of young stars in an OB association, the value of the sound speed, the stratification and density of the ambient medium, the galactic differential rotation and the gravitational force perpendicular to the galactic plane. The typical size of gravitationally unstable shells is 1 kpc for an ambient gas density n=1 cm^-3. In thick disk galaxies the fragmentation occurs in nearly the whole shell while in thin disks it is restricted to the galactic equator. Unstable fragments may become molecular and trigger the formation of molecular clouds, and finally new star formation. We conclude that in dwarf galaxies the star formation may propagate in all directions turning the system into a star- burst. Contrary to that, the star formation in spiral galaxies propagates only in some directions in a thin strip near the symmetry plane, basically at the tips of the expanding shell.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا