ﻻ يوجد ملخص باللغة العربية
We present supportive evidence that the Boroson and Green eigenvector 1 is not driven by source orientation. Until recently it was generally accepted that eigenvector 1 does not depend on orientation as it strongly correlates with [OIII]5007 emission, thought to be an isotropic property. However, recent studies of radio-loud AGN have questioned the isotropy of [OIII] emission and concluded that [OII]3727 emission is isotropic. In this paper we investigate the relation between eigenvector 1 and [OII] emission in radio-quiet BQS (Bright Quasar Survey) quasars, and readdress the issue of orientation as the driver of eigenvector 1. We find significant correlations between eigenvector 1 and orientation independent [OII] emission, which implies that orientation does not drive eigenvector 1. The luminosities and equivalent widths of [OIII] and [OII] correlate with one another, and the range in luminosities and equivalent widths is similar. This suggests that the radio-quiet BQS quasars are largely free of orientation dependent dust effects and ionization dependent effects in the narrow-line region. We also conclude that neither the [OIII] emission nor the [OII]/[OIII] ratio are dependent on orientation in our radio-quiet BQS quasar sample, contrary to recent results found for radio-loud quasars.
In order to understand the role of radio-quiet quasars (RQQs) in galaxy evolution, we must determine the relative levels of accretion and star-formation activity within these objects. Previous work at low radio flux-densities has shown that accretion
We discuss 6 GHz JVLA observations covering a volume-limited sample of 178 low redshift ($0.2 < z < 0.3$) optically selected QSOs. Our 176 radio detections fall into two clear categories: (1) About $20$% are radio-loud QSOs (RLQs) having spectral lum
Understanding the interplay between black-hole accretion and star formation, and how to disentangle the two, is crucial to our understanding of galaxy formation and evolution. To investigate, we use a combination of optical and near-infrared photomet
A small subset of optically selected radio-quiet quasars showing weak or no emission lines may turn out to be the elusive radio-quiet BL Lac objects, or simply be radio-quiet QSOs with a still-forming/shielded broad line region (BLR). High polarisati
We present radio and X-ray observations, as well as optical light curves, for a subset of 26 BL Lac candidates from the Sloan Digital Sky Survey (SDSS) lacking strong radio emission and with z<2.2. Half of these 26 objects are shown to be stars, gala