ﻻ يوجد ملخص باللغة العربية
We investigate the thermal, magnetic and rotational evolution of isolated neutron stars assuming that the dipolar magnetic field is confined to the crust. Our treatment, for the first time, uses a fully general relativistic formalism not only for the thermal but also for the magnetic part, and includes partial general relativistic effects in the rotational part. Due to the fact that the combined evolution depends crucially upon the compactness of the star, three different equations of state have been employed in the calculations. In the absence of general relativistic effects, while upon increasing compactness a decrease of the crust thickness takes place leading into an accelerating field decay, the inclusion of general relativistic effects intend to ``decelerate this acceleration. As a consequence we find that within the crustal field hypothesis, a given equation of state is compatible with the observed periods $P$ and period derivative $dot P$ provided the initial field strength and current location as well as the magnitude of the impurity content are constrained appropriately. Finally, we access the flexibility of the soft, medium and stiff classes of equations of state as candidates in describing the state of the matter in the neutron star interiors. The comparison of our model calculations with observations, together with the consideration of independent information about neutron star evolution, suggests that a not too soft equation of state describes neutron star interiors and its cooling proceeds along the `standard scenario.
Soft Gamma-ray Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) are interpreted as young highly magnetized neutron stars (NSs). Their X-ray luminosity in quiescence, exceeding 10^{35} erg s^{-1} cannot be explained as due to cooling of a highly ma
The strong magnetic field of neutron stars is intimately coupled to the observed temperature and spectral properties, as well as to the observed timing properties (distribution of spin periods and period derivatives). Thus, a proper theoretical and n
The impact of strong magnetic fields B>10e13 G on the thermal evolution of neutron stars is investigated, including crustal heating by magnetic field decay. For this purpose, we perform 2D cooling simulations with anisotropic thermal conductivity con
Neutron stars are natural physical laboratories allowing us to study a plethora of phenomena in extreme conditions. In particular, these compact objects can have very strong magnetic fields with non-trivial origin and evolution. In many respects its
Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates th