ترغب بنشر مسار تعليمي؟ اضغط هنا

General relativistic treatment of the thermal, magnetic and rotational evolution of neutron stars with crustal magnetic fields

70   0   0.0 ( 0 )
 نشر من قبل Ulrich R. M. E. Geppert
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the thermal, magnetic and rotational evolution of isolated neutron stars assuming that the dipolar magnetic field is confined to the crust. Our treatment, for the first time, uses a fully general relativistic formalism not only for the thermal but also for the magnetic part, and includes partial general relativistic effects in the rotational part. Due to the fact that the combined evolution depends crucially upon the compactness of the star, three different equations of state have been employed in the calculations. In the absence of general relativistic effects, while upon increasing compactness a decrease of the crust thickness takes place leading into an accelerating field decay, the inclusion of general relativistic effects intend to ``decelerate this acceleration. As a consequence we find that within the crustal field hypothesis, a given equation of state is compatible with the observed periods $P$ and period derivative $dot P$ provided the initial field strength and current location as well as the magnitude of the impurity content are constrained appropriately. Finally, we access the flexibility of the soft, medium and stiff classes of equations of state as candidates in describing the state of the matter in the neutron star interiors. The comparison of our model calculations with observations, together with the consideration of independent information about neutron star evolution, suggests that a not too soft equation of state describes neutron star interiors and its cooling proceeds along the `standard scenario.



قيم البحث

اقرأ أيضاً

88 - U. Geppert 1999
Soft Gamma-ray Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) are interpreted as young highly magnetized neutron stars (NSs). Their X-ray luminosity in quiescence, exceeding 10^{35} erg s^{-1} cannot be explained as due to cooling of a highly ma gnetized NS, but requires as an extra heat source the decay of its magnetic field (MF). We study numerically the coupled evolution of the MF, temperature and spin period under the assumption that the currents maintaining the field are confined in the crust of the star. The decay of the field depends on the field strength itself (Hall-drift), on the temperature and injects heat into the star, but is controlled by neutrino emission. Finally we consider the spin down from magnetic dipole braking with this decaying field to track the long term evolution. We find reasonable initial conditions for the MF strength and structure to explain their current observational values both of their rotational period, its time derivative and the X-ray luminosity of AXPs and SGRs.the X-ray luminosity of AXPs and SGRs.
The strong magnetic field of neutron stars is intimately coupled to the observed temperature and spectral properties, as well as to the observed timing properties (distribution of spin periods and period derivatives). Thus, a proper theoretical and n umerical study of the magnetic field evolution equations, supplemented with detailed calculations of microphysical properties (heat and electrical conductivity, neutrino emission rates) is crucial to understand how the strength and topology of the magnetic field vary as a function of age, which in turn is the key to decipher the physical processes behind the varied neutron star phenomenology. In this review, we go through the basic theory describing the magneto-thermal evolution models of neutron stars, focusing on numerical techniques, and providing a battery of benchmark tests to be used as a reference for present and future code developments. We summarize well-known results from axisymmetric cases, give a new look at the latest 3D advances, and present an overview of the expectations for the field in the coming years.
The impact of strong magnetic fields B>10e13 G on the thermal evolution of neutron stars is investigated, including crustal heating by magnetic field decay. For this purpose, we perform 2D cooling simulations with anisotropic thermal conductivity con sidering all relevant neutrino emission processes for realistic neutron stars. The standard cooling models of neutron stars are called into question by showing that the magnetic field has relevant (and in many cases dominant) effects on the thermal evolution. The presence of the magnetic field significantly affects the thermal surface distribution and the cooling history of these objects during both, the early neutrino cooling era and the late photon cooling era. The minimal cooling scenario is thus more complex than generally assumed. A consistent magneto-thermal evolution of magnetized neutron stars is needed to explain the observations.
Neutron stars are natural physical laboratories allowing us to study a plethora of phenomena in extreme conditions. In particular, these compact objects can have very strong magnetic fields with non-trivial origin and evolution. In many respects its magnetic field determines the appearance of a neutron star. Thus, understanding the field properties is important for interpretation of observational data. Complementing this, observations of diverse kinds of neutron stars enable us to probe parameters of electro-dynamical processes at scales unavailable in terrestrial laboratories. In this review we first briefly describe theoretical models of formation and evolution of magnetic field of neutron stars, paying special attention to field decay processes. Then we present important observational results related to field properties of different types of compact objects: magnetars, cooling neutron stars, radio pulsars, sources in binary systems. After that, we discuss which observations can shed light on obscure characteristics of neutron star magnetic fields and their behaviour. We end the review with a subjective list of open problems.
Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates th e braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا