ترغب بنشر مسار تعليمي؟ اضغط هنا

Abundance evolution of intermediate mass elements (C to Zn) in the Milky Way halo and disk

178   0   0.0 ( 0 )
 نشر من قبل Nikos Prantzos
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comprehensive study of the evolution of the abundances of intermediate mass elements, from C to Zn, in the Milky Way halo and in the local disk. We use a consistent model to describe the evolution of those two galactic subsystems. The halo and the disk are assumed to evolve independently, both starting with gas of primordial composition, and in different ways: strong outflow is assumed to take place during the $sim$1 Gyr of the halo formation, while the disk is built by slowly infalling gas. This description of the halo+disk evolution can correctly account for the main observational constraints (at least in the framework of simple models of galactic chemical evolution). We utilise then metallicity dependant yields to study the evolution of all elements from C and Zn. Comparing our results to an extensive body of observational data (including very recent ones), we are able to make a critical analysis of the successes and shortcomings of current yields of massive stars. Finally, we discuss qualitatively some possible ways to interpret the recent data on oxygen vs iron, which suggest that oxygen behaves differently from the other alpha-elements.



قيم البحث

اقرأ أيضاً

130 - Elena DOnghia 2009
We employ numerical simulations and simple analytical estimates to argue that dark matter substructures orbiting in the inner regions of the Galaxy can be efficiently destroyed by disk shocking, a dynamical process known to affect globular star clust ers. We carry out a set of fiducial high-resolution collisionless simulations in which we adiabatically grow a disk, allowing us to examine the impact of the disk on the substructure abundance. We also track the orbits of dark matter satellites in the high-resolution Aquarius simulations and analytically estimate the cumulative halo and disk shocking effect. Our calculations indicate that the presence of a disk with only 10% of the total Milky Way mass can significantly alter the mass function of substructures in the inner parts of halos. This has important implications especially for the relatively small number of satellites seen within ~30 kpc of the Milky Way center, where disk shocking is expected to reduce the substructure abundance by a factor of ~2 at 10^9 M$_{odot}$ and ~3 at 10^7 M$_{odot}$. The most massive subhalos with 10^10 M$_{odot}$ survive even in the presence of the disk. This suggests that there is no inner missing satellite problem, and calls into question whether these substructures can produce transient features in disks, like multi-armed spiral patterns. Also, the depletion of dark matter substructures through shocking on the baryonic structures of the disk and central bulge may aggravate the problem to fully account for the observed flux anomalies in gravitational lens systems, and significantly reduces the dark matter annihilation signal expected from nearby substructures in the inner halo.
128 - Alis J. Deason 2019
We measure the total stellar halo luminosity using red giant branch (RGB) stars selected from Gaia data release 2. Using slices in magnitude, colour and location on the sky, we decompose RGB stars belonging to the disc and halo by fitting 2-dimension al Gaussians to the Galactic proper motion distributions. The number counts of RGB stars are converted to total stellar halo luminosity using a suite of isochrones weighted by age and metallicity, and by applying a volume correction based on the stellar halo density profile. Our method is tested and calibrated using Galaxia and N-body models. We find a total luminosity (out to 100 kpc) of L_halo = 7.9 +/- 2.0 x 10^8 L_Sun excluding Sgr, and L_halo = 9.4 +/- 2.4 x 10^8 L_Sun including Sgr. These values are appropriate for our adopted stellar halo density profile and metallicity distribution, but additional systematics related to these assumptions are quantified and discussed. Assuming a stellar mass-to-light ratio appropriate for a Kroupa initial mass function (M*/L = 1.5), we estimate a stellar halo mass of M*_halo = 1.4 +/- 0.4 x 10^9 M_Sun. This mass is larger than previous estimates in the literature, but is in good agreement with the emerging picture that the (inner) stellar halo is dominated by one massive dwarf progenitor. Finally, we argue that the combination of a ~10^9 M_Sun mass and an average metallicity of <[Fe/H]> ~ -1.5 for the Galactic halo points to an ancient (~10 Gyr) merger event.
Using data from the Galactic All-Sky Survey, we have compared the properties and distribution of HI clouds in the disk-halo transition at the tangent points in mirror-symmetric regions of the first quadrant (QI) and fourth quadrant (QIV) of the Milky Way. Individual clouds are found to have identical properties in the two quadrants. However, there are 3 times as many clouds in QI as in QIV, their scale height is twice as large, and their radial distribution is more uniform. We attribute these major asymmetries to the formation of the clouds in the spiral arms of the Galaxy, and suggest that the clouds are related to star formation in the form of gas that has been lifted from the disk by superbubbles and stellar feedback, and fragments of shells that are falling back to the plane.
54 - N. Prantzos 2002
We develop a detailed model of the Milky Way (a ``prototypical disk galaxy) and extend it to other disks with the help of some simple scaling relations, obtained in the framework of Cold Dark Matter models. This phenomenological (``hybrid) approach t o the study of disk galaxy evolution allows us to reproduce successfully a large number of observed properties of disk galaxies in the local Universe and up to redshift z~1. The important conclusion is that, on average, massive disks have formed the bulk of their stars earlier than their lower mass counterparts: the ``star formation hierarchy has been apparently opposite to the ``dark matter assembly hierarchy. It is not yet clear whether ``feedback (as used in semi-analytical models of galaxy evolution) can explain that discrepancy.
89 - Xiangcheng Ma 2016
We study the structure, age and metallicity gradients, and dynamical evolution using a cosmological zoom-in simulation of a Milky Way-mass galaxy from the Feedback in Realistic Environments project. In the simulation, stars older than 6 Gyr were form ed in a chaotic, bursty mode and have the largest vertical scale heights (1.5-2.5 kpc) by z=0, while stars younger than 6 Gyr were formed in a relatively calm, stable disk. The vertical scale height increases with stellar age at all radii, because (1) stars that formed earlier were thicker at birth, and (2) stars were kinematically heated to an even thicker distribution after formation. Stars of the same age are thicker in the outer disk than in the inner disk (flaring). These lead to positive vertical age gradients and negative radial age gradients. The radial metallicity gradient is neg- ative at the mid-plane, flattens at larger disk height |Z|, and turns positive above |Z|~1.5kpc. The vertical metallicity gradient is negative at all radii, but is steeper at smaller radii. These trends broadly agree with observations in the Milky Way and can be naturally understood from the age gradients. The vertical stellar density profile can be well-described by two components, with scale heights 200-500 pc and 1-1.5 kpc, respectively. The thick component is a mix of stars older than 4 Gyr which formed through a combination of several mechanisms. Our results also demonstrate that it is possible to form a thin disk in cosmological simulations even with strong stellar feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا