ترغب بنشر مسار تعليمي؟ اضغط هنا

Unravelling Active Galactic Nuclei

69   0   0.0 ( 0 )
 نشر من قبل Thomas Boller
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.Y.K.N. Oshlack




اسأل ChatGPT حول البحث

A complete flat-spectrum radio-loud sample of AGN includes a significant fraction of Seyfert-like AGN including a NLS1. Analysis of their optical spectra suggests that the reddest continuum colours are either associated with AGN in nearby resolved galaxies, or distant quasars showing relatively narrow permitted emission lines.



قيم البحث

اقرأ أيضاً

131 - Ryan C. Hickox 2018
Active Galactic Nuclei (AGN) are powered by the accretion of material onto a supermassive black hole (SMBH), and are among the most luminous objects in the Universe. However, the huge radiative power of most AGN cannot be seen directly, as the accret ion is hidden behind gas and dust that absorbs many of the characteristic observational signatures. This obscuration presents an important challenge for uncovering the complete AGN population and understanding the cosmic evolution of SMBHs. In this review we describe a broad range of multi-wavelength techniques that are currently employed to identify obscured AGN, and assess the reliability and completeness of each technique. We follow with a discussion of the demographics of obscured AGN activity, explore the nature and physical scales of the obscuring material, and assess the implications of obscured AGN for observational cosmology. We conclude with an outline of the prospects for future progress from both observations and theoretical models, and highlight some of the key outstanding questions.
Gravitational wave (GW) and gravitational slingshot recoil kicks, which are natural products of SMBH evolution in merging galaxies, can produce active galactic nuclei that are offset from the centers of their host galaxies. Detections of offset AGN w ould provide key constraints on SMBH binary mass and spin evolution and on GW event rates. Although numerous offset AGN candidates have been identified, none have been definitively confirmed. Multi-wavelength observations with next-generation telescopes, including systematic large-area surveys, will provide unprecedented opportunities to identify and confirm candidate offset AGN from sub-parsec to kiloparsec scales. We highlight ways in which these observations will open a new avenue for multi-messenger studies in the dawn of low-frequency (~ nHz - mHz) GW astronomy.
258 - D.J. Saikia NCRA 2010
There has been a growing body of evidence to suggest that AGN activity, which is powered by mass accretion on to a supermasive black hole, could be episodic, although the range of time scales involved needs to be explored further. The structure and s pectra of radio emission from radio galaxies, whose sizes range up to $sim$5 Mpc, contain information on the history of AGN activity in the source. They thus provide a unique opportunity to study the time scales of recurrent AGN activity. The most striking examples of recurrent activity in radio galaxies and quasars are the double-double or triple-double radio sources which contain two or three pairs of distinct lobes on opposite sides of the parent optical object. Spectral and dynamical ages of these lobes could be used to constrain time scales of episodic activity. Inverse-Compton scattered cosmic microwave background radiation could in principle probe lower Lorentz-factor particles than radio observations of synchrotron emission, and thereby reveal an older population. We review briefly the radio continuum as well as molecular and atomic gas properties of radio sources which exhibit recurrent or episodic activity, and present a few cases of quasars which require further observations to confirm their episodic nature. We also illustrate evidence of episodic AGN activity in radio sources in clusters of galaxies.
191 - D. J. Saikia 2011
There is increasing evidence to suggest that AGN activity may be episodic, with a wide range of possible time scales. Radio galaxies exhibit the most striking examples of episodic activity, with two or three distinct pairs of lobes on opposite sides of the active nucleus. Radio emission from earlier cycles of activity are expected to have steep radio spectra due to radiative losses, and hence be detected more easily at low radio frequencies. Inverse-Compton scattered cosmic microwave background radiation could in prinicple probe even lower Lorentz-factor particles, revealing an older population. We illustrate the time scales of episodic activity by considering different radio galaxies, discuss the possiblity of episodic activity in cluster radio sources, and a possible trend for a high incidence of H{sc i} absorption in sources with evidence of episodic activity.
262 - Y. Y. Kovalev 2008
A review is given on the current status and selected results from large VLBI surveys of compact extragalactic radio sources made between 13 cm and 3 mm wavelengths and covering the entire sky. More than 4200 objects are observed and imaged with dynam ic ranges from a hundred to several thousand at (sub)parsec scales. Implications to the VSOP-2 project are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا