ﻻ يوجد ملخص باللغة العربية
We derive the astrometric orbit of the photo-center of the close pair alpha UMi AP (=alpha UMi Aa) of the Polaris multiple stellar system. The orbit is based on the spectroscopic orbit of the Cepheid alpha UMi A (orbital period of AP: 29.59 years), and on the difference Delta mu between the quasi-instantaneously measured HIPPARCOS proper motion of Polaris and the long-term-averaged proper motion given by the FK5. There remains an ambiguity in the inclination i of the orbit, since Delta mu cannot distinguish between a prograde orbit (i=50.1 deg) and a retrograde one (i=130.2 deg). Available photographic observations of Polaris favour strongly the retrograde orbit. For the semi-major axis of the photo-center of AP we find about 29 milliarcsec (mas). For the component P, we estimate a mass of 1.5 solar masses and a magnitude difference with respect to the Cepheid of 6.5 mag. The present separation between A and P should be about 160 mas. We obtain the proper motion of the center-of-mass of alpha UMi AP with a mean error of about 0.45 mas/year. Using the derived astrometric orbit, we find the position of the center-of-mass at the epoch 1991.31 with an accuracy of about 3.0 mas. Our ephemerides for the orbital correction, required for going from the position of the center-of-mass to the instantaneous position of the photo-center of AP at an arbitrary epoch, have a typical uncertainty of 5 mas. For epochs which differ from the HIPPARCOS epoch by more than a few years, a prediction for the actual position of Polaris based on our results should be significantly more accurate than using the HIPPARCOS data in a linear prediction, since the HIPPARCOS proper motion contains the instantaneous orbital motion of about 4.9 mas/year = 3.1 km/s. Finally we derive the galactic space motion of Polaris.
We provide a scheme to correct asteroid astrometric observations for star catalog systematic errors due to inaccurate star positions and proper motions. As reference we select the most accurate stars in the PPMXL catalog, i.e., those based on 2MASS a
We present the first absolute proper motion measurement of Leo I, based on two epochs of HST ACS/WFC images separated by ~5 years. The average shift of Leo I stars with respect to ~100 background galaxies implies a proper motion of (mu_W, mu_N) = (0.
Astrometric positions of moving objects in the Solar System have been measured using a variety of star catalogs in the past. Previous work has shown that systematic errors in star catalogs can affect the accuracy of astrometric observations. That, in
We have used the Very Large Array, linked with the Pie Town Very Long Baseline Array antenna, to determine astrometric positions of 19 radio stars in the International Celestial Reference Frame (ICRF). The positions of these stars were directly linke
We present an analysis of the proper motion of the Andromeda galaxy (M31), based on the Early Third Data Release of the Gaia mission. We use the Gaia photometry to select young blue main sequence stars, and apply several quality cuts to obtain clean