ﻻ يوجد ملخص باللغة العربية
We present observations of RD J030117+002025, a quasar at z=5.50 discovered from deep, multi-color, ground-based observations covering 74 square arcmin. This is the most distant quasar or AGN currently known. The object was targeted as an R-band dropout, with R(AB)>26.3 (3-sigma limit in a 3 arcsec diameter region), I(AB)=23.8, and z(AB)=23.4. The Keck/LRIS spectrum shows broad Lyman-alpha/NV emission and sharp absorption decrements from the highly-redshifted hydrogen forests. The fractional continuum depression due to the Lyman-alpha forest is D(A)=0.90. RD J030117+002025 is the least luminous, high-redshift quasar known (M(B)~-22.7).
Strong gravitational lensing provides a powerful probe of the physical properties of quasars and their host galaxies. A high fraction of the most luminous high-redshift quasars was predicted to be lensed due to magnification bias. However, no multipl
Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-$alpha$
Radio sources at the highest redshifts can provide unique information on the first massive galaxies and black holes, the densest primordial environments, and the epoch of reionization. The number of astronomical objects identified at z>6 has increase
We report the discovery of a quasar at z = 7.07, which was selected from the deep multi-band imaging data collected by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. This quasar, HSC J124353.93+010038.5, has an order of magnitude lower
Recent studies suggest that faint active galactic nuclei may be responsible for the reionization of the universe. Confirmation of this scenario requires spectroscopic identification of faint quasars ($M_{1450}>-24$ mag) at $z gtrsim6$, but only a ver