ﻻ يوجد ملخص باللغة العربية
The three gamma-ray burst (GRB) classes identified by statistical clustering analysis (Mukherjee et al. 1998) are examined using the pattern recognition algorithm C4.5 (Quinlan 1986). Although the statistical existence of Class 3 (intermediate duration, intermediate fluence, soft) is supported, the properties of this class do not need to arise from a distinct source population. Class 3 properties can easily be produced from Class 1 (long, high fluence, intermediate hardness) by a combination of measurement error, hardness/intensity correlation, and a newly-identified BATSE bias (the fluence duration bias). Class 2 (short, low fluence, hard) does not appear to be related to Class 1.
A sample of 427 gamma-ray bursts (GRBs), measured by the RHESSI satellite, is studied statistically to determine the number of GRB groups. Previous studies based on the BATSE Catalog and recently on the Swift data claim the existence of an intermedia
We present millimetre (mm) and submillimetre (submm) photometry of a sample of host galaxies of Gamma Ray Bursts (GRBs), obtained using the MAMBO2 and SCUBA bolometer arrays respectively. These observations were obtained as part of an ongoing project
We present a multiwavelength analysis of 63 Gamma-Ray Bursts observed with the worlds three largest robotic optical telescopes, the Liverpool and Faulkes Telescopes (North and South). Optical emission was detected for 24 GRBs with brightnesses rangin
We study the nature of long gamma ray burst (LGRB) progenitors using cosmological simulations of structure formation and galactic evolution. LGRBs are potentially excellent tracers of stellar evolution in the early universe. We developed a Monte Carl
We use galaxy catalogues constructed by combining high-resolution N-body simulations with semi-analytic models of galaxy formation to study the properties of Long Gamma-Ray Burst (LGRB) host galaxies. We assume that LGRBs originate from the death of