ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling Up Silicon Photonic-based Accelerators: Challenges and Opportunities, and Roadmapping with SiliconPhotonics 2.0

413   0   0.0 ( 0 )
 نشر من قبل Mohammed Al-Qadasi
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Digital accelerators in the latest generation of CMOS processes support multiply and accumulate (MAC) operations at energy efficiencies spanning 10-to-100~fJ/Op. But the operating speed for such MAC operations are often limited to a few hundreds of MHz. Optical or optoelectronic MAC operations on todays SOI-based silicon photonic integrated circuit platforms can be realized at a speed of tens of GHz, leading to much lower latency and higher throughput. In this paper, we study the energy efficiency of integrated silicon photonic MAC circuits based on Mach-Zehnder modulators and microring resonators. We describe the bounds on energy efficiency and scaling limits for N x N optical networks with todays technology, based on the optical and electrical link budget. We also describe research directions that can overcome the current limitations. The next generation of silicon photonics, which we term Silicon Photonics 2.0, promises many exciting opportunities to enable the next frontier in optical computing and communication.



قيم البحث

اقرأ أيضاً

Neural networks have enabled applications in artificial intelligence through machine learning, and neuromorphic computing. Software implementations of neural networks on conventional computers that have separate memory and processor (and that operate sequentially) are limited in speed and energy efficiency. Neuromorphic engineering aims to build processors in which hardware mimics neurons and synapses in the brain for distributed and parallel processing. Neuromorphic engineering enabled by photonics (optical physics) can offer sub-nanosecond latencies and high bandwidth with low energies to extend the domain of artificial intelligence and neuromorphic computing applications to machine learning acceleration, nonlinear programming, intelligent signal processing, etc. Photonic neural networks have been demonstrated on integrated platforms and free-space optics depending on the class of applications being targeted. Here, we discuss the prospects and demonstrated applications of these photonic neural networks.
Convolution neural network (CNN), as one of the most powerful and popular technologies, has achieved remarkable progress for image and video classification since its invention in 1989. However, with the high definition video-data explosion, convoluti on layers in the CNN architecture will occupy a great amount of computing time and memory resources due to high computation complexity of matrix multiply accumulate operation. In this paper, a novel integrated photonic CNN is proposed based on double correlation operations through interleaved time-wavelength modulation. Micro-ring based multi-wavelength manipulation and single dispersion medium are utilized to realize convolution operation and replace the conventional optical delay lines. 200 images are tested in MNIST datasets with accuracy of 85.5% in our photonic CNN versus 86.5% in 64-bit computer.We also analyze the computing error of photonic CNN caused by various micro-ring parameters, operation baud rates and the characteristics of micro-ring weighting bank. Furthermore, a tensor processing unit based on 4x4 mesh with 1.2 TOPS (operation per second when 100% utilization) computing capability at 20G baud rate is proposed and analyzed to form a paralleled photonic CNN.
Silicon-photonic neural networks (SPNNs) offer substantial improvements in computing speed and energy efficiency compared to their digital electronic counterparts. However, the energy efficiency and accuracy of SPNNs are highly impacted by uncertaint ies that arise from fabrication-process and thermal variations. In this paper, we present the first comprehensive and hierarchical study on the impact of random uncertainties on the classification accuracy of a Mach-Zehnder Interferometer (MZI)-based SPNN. We show that such impact can vary based on both the location and characteristics (e.g., tuned phase angles) of a non-ideal silicon-photonic device. Simulation results show that in an SPNN with two hidden layers and 1374 tunable-thermal-phase shifters, random uncertainties even in mature fabrication processes can lead to a catastrophic 70% accuracy loss.
Vehicle-to-Everything (V2X) will create many new opportunities in the area of wireless communications, while its feasibility on enabling vehicular positioning has not been explored yet. Vehicular positioning is a crucial operation for autonomous driv ing. Its complexity and stringent safety requirement render conventional technologies like RADAR and LIDAR inadequate. This article aims at investigating whether V2X can help vehicular positioning from different perspectives. We first explain V2Xs critical advantages over other approaches and suggest new scenarios of V2X-based vehicular positioning. Then we review the state-of-the-art positioning techniques discussed in the ongoing 3GPP standardization and point out their limitations. Lastly, some promising research directions for V2X-based vehicular positioning are presented, which shed light on realizing fully autonomous driving by overcoming the current barriers.
Optical and optoelectronic approaches of performing matrix-vector multiplication (MVM) operations have shown the great promise of accelerating machine learning (ML) algorithms with unprecedented performance. The incorporation of nanomaterials into th e system can further improve the performance thanks to their extraordinary properties, but the non-uniformity and variation of nanostructures in the macroscopic scale pose severe limitations for large-scale hardware deployment. Here, we report a new optoelectronic architecture consisting of spatial light modulators and photodetector arrays made from graphene to perform MVM. The ultrahigh carrier mobility of graphene, nearly-zero-power-consumption electro-optic control, and extreme parallelism suggest ultrahigh data throughput and ultralow-power consumption. Moreover, we develop a methodology of performing accurate calculations with imperfect components, laying the foundation for scalable systems. Finally, we perform a few representative ML algorithms, including singular value decomposition, support vector machine, and deep neural networks, to show the versatility and generality of our platform.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا