ﻻ يوجد ملخص باللغة العربية
Basic human values represent a set of values such as security, independence, success, kindness, and pleasure, which we deem important to our lives. Each of us holds different values with different degrees of significance. Existing studies show that values of a person can be identified from their social network usage. However, the value priority of a person may change over time due to different factors such as life experiences, influence, social structure and technology. Existing studies do not conduct any analysis regarding the change of users value from the social influence, i.e., group persuasion, form the social media usage. In our research, first, we predict users value score by the influence of friends from their social media usage. We propose a Bounded Confidence Model (BCM) based value dynamics model from 275 different ego networks in Facebook that predicts how social influence may persuade a person to change their value over time. Then, to predict better, we use particle swarm optimization based hyperparameter tuning technique. We observe that these optimized hyperparameters produce accurate future value score. We also run our approach with different machine learning based methods and find support vector regression (SVR) outperforms other regressor models. By using SVR with the best hyperparameters of BCM model, we find the lowest Mean Squared Error (MSE) score 0.00347.
The problem of predicting peoples participation in real-world events has received considerable attention as it offers valuable insights for human behavior analysis and event-related advertisement. Today social networks (e.g. Twitter) widely reflect l
Businesses communicate using Twitter for a variety of reasons -- to raise awareness of their brands, to market new products, to respond to community comments, and to connect with their customers and potential customers in a targeted manner. For busin
Todays social media platforms enable to spread both authentic and fake news very quickly. Some approaches have been proposed to automatically detect such fake news based on their content, but it is difficult to agree on universal criteria of authenti
Users of Online Social Networks (OSNs) interact with each other more than ever. In the context of a public discussion group, people receive, read, and write comments in response to articles and postings. In the absence of access control mechanisms, O
Participation on social media platforms has many benefits but also poses substantial threats. Users often face an unintended loss of privacy, are bombarded with mis-/disinformation, or are trapped in filter bubbles due to over-personalized content. T