ترغب بنشر مسار تعليمي؟ اضغط هنا

The NiuTrans System for WNGT 2020 Efficiency Task

142   0   0.0 ( 0 )
 نشر من قبل Hu Chi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes the submissions of the NiuTrans Team to the WNGT 2020 Efficiency Shared Task. We focus on the efficient implementation of deep Transformer models cite{wang-etal-2019-learning, li-etal-2019-niutrans} using NiuTensor (https://github.com/NiuTrans/NiuTensor), a flexible toolkit for NLP tasks. We explored the combination of deep encoder and shallow decoder in Transformer models via model compression and knowledge distillation. The neural machine translation decoding also benefits from FP16 inference, attention caching, dynamic batching, and batch pruning. Our systems achieve promising results in both translation quality and efficiency, e.g., our fastest system can translate more than 40,000 tokens per second with an RTX 2080 Ti while maintaining 42.9 BLEU on textit{newstest2018}. The code, models, and docker images are available at NiuTrans.NMT (https://github.com/NiuTrans/NiuTrans.NMT).



قيم البحث

اقرأ أيضاً

This paper describes the NiuTrans system for the WMT21 translation efficiency task (http://statmt.org/wmt21/efficiency-task.html). Following last years work, we explore various techniques to improve efficiency while maintaining translation quality. W e investigate the combinations of lightweight Transformer architectures and knowledge distillation strategies. Also, we improve the translation efficiency with graph optimization, low precision, dynamic batching, and parallel pre/post-processing. Our system can translate 247,000 words per second on an NVIDIA A100, being 3$times$ faster than last years system. Our system is the fastest and has the lowest memory consumption on the GPU-throughput track. The code, model, and pipeline will be available at NiuTrans.NMT (https://github.com/NiuTrans/NiuTrans.NMT).
This paper describes the Notre Dame Natural Language Processing Groups (NDNLP) submission to the WNGT 2019 shared task (Hayashi et al., 2019). We investigated the impact of auto-sizing (Murray and Chiang, 2015; Murray et al., 2019) to the Transformer network (Vaswani et al., 2017) with the goal of substantially reducing the number of parameters in the model. Our method was able to eliminate more than 25% of the models parameters while suffering a decrease of only 1.1 BLEU.
This paper describes the submission of the NiuTrans end-to-end speech translation system for the IWSLT 2021 offline task, which translates from the English audio to German text directly without intermediate transcription. We use the Transformer-based model architecture and enhance it by Conformer, relative position encoding, and stacked acoustic and textual encoding. To augment the training data, the English transcriptions are translated to German translations. Finally, we employ ensemble decoding to integrate the predictions from several models trained with the different datasets. Combining these techniques, we achieve 33.84 BLEU points on the MuST-C En-De test set, which shows the enormous potential of the end-to-end model.
Nowadays, offensive content in social media has become a serious problem, and automatically detecting offensive language is an essential task. In this paper, we build an offensive language detection system, which combines multi-task learning with BER T-based models. Using a pre-trained language model such as BERT, we can effectively learn the representations for noisy text in social media. Besides, to boost the performance of offensive language detection, we leverage the supervision signals from other related tasks. In the OffensEval-2020 competition, our model achieves 91.51% F1 score in English Sub-task A, which is comparable to the first place (92.23%F1). An empirical analysis is provided to explain the effectiveness of our approaches.
Typological knowledge bases (KBs) such as WALS (Dryer and Haspelmath, 2013) contain information about linguistic properties of the worlds languages. They have been shown to be useful for downstream applications, including cross-lingual transfer learn ing and linguistic probing. A major drawback hampering broader adoption of typological KBs is that they are sparsely populated, in the sense that most languages only have annotations for some features, and skewed, in that few features have wide coverage. As typological features often correlate with one another, it is possible to predict them and thus automatically populate typological KBs, which is also the focus of this shared task. Overall, the task attracted 8 submissions from 5 teams, out of which the most successful methods make use of such feature correlations. However, our error analysis reveals that even the strongest submitted systems struggle with predicting feature values for languages where few features are known.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا