The conceptual picture underlying resolvent analysis(RA) is that the nonlinear term in the Navier-Stokes(NS) equations provides an intrinsic forcing to the linear dynamics, a description inspired by control theory. The inverse of the linear operator, defined as the resolvent, is interpreted as a transfer function between the forcing and the velocity response. This inversion obscures the physical interpretation of the governing equations and is prohibitive to analytical manipulation, and for large systems leads to significant computational cost and memory requirements. In this work we suggest an alternative, inverse free, definition of the resolvent basis based on an extension of the Courant-Fischer-Weyl min-max principle in which resolvent modes are defined as stationary points of a constrained variational problem. This leads to a straightforward approach to approximate the resolvent (response) modes of complex flows as expansions in any basis. The proposed method avoids matrix