ﻻ يوجد ملخص باللغة العربية
With the increased deployment of face recognition systems in our daily lives, face presentation attack detection (PAD) is attracting a lot of attention and playing a key role in securing face recognition systems. Despite the great performance achieved by the hand-crafted and deep learning based methods in intra-dataset evaluations, the performance drops when dealing with unseen scenarios. In this work, we propose a dual-stream convolution neural networks (CNNs) framework. One stream adapts four learnable frequency filters to learn features in the frequency domain, which are less influenced variations in sensors/illuminations. The other stream leverage the RGB images to complement the features of the frequency domain. Moreover, we propose a hierarchical attention module integration to join the information from the two streams at different stages by considering the nature of deep features in different layers of the CNN. The proposed method is evaluated in the intra-dataset and cross-dataset setups and the results demonstrates that our proposed approach enhances the generalizability in most experimental setups in comparison to state-of-the-art, including the methods designed explicitly for domain adaption/shift problem. We successfully prove the design of our proposed PAD solution in a step-wise ablation study that involves our proposed learnable frequency decomposition, our hierarchical attention module design, and the used loss function. Training codes and pre-trained models are publicly released.
Face anti-spoofing approaches based on domain generalization (DG) have drawn growing attention due to their robustness for unseen scenarios. Previous methods treat each sample from multiple domains indiscriminately during the training process, and en
Face presentation attack detection (PAD) has been an urgent problem to be solved in the face recognition systems. Conventional approaches usually assume the testing and training are within the same domain; as a result, they may not generalize well in
The threat of 3D masks to face recognition systems is increasingly serious and has been widely concerned by researchers. To facilitate the study of the algorithms, a large-scale High-Fidelity Mask dataset, namely CASIA-SURF HiFiMask (briefly HiFiMask
3D mask face presentation attack detection (PAD) plays a vital role in securing face recognition systems from emergent 3D mask attacks. Recently, remote photoplethysmography (rPPG) has been developed as an intrinsic liveness clue for 3D mask PAD with
Presentation attack detection (PAD) is a critical component in secure face authentication. We present a PAD algorithm to distinguish face spoofs generated by a photograph of a subject from live images. Our method uses an image decomposition network t